Citation: | HAI C L,HE L,MEI L Q,et al. Modern design of experiment and its development in aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):1-10.. DOI: 10.11729/syltlx20220005 |
[1] |
DeLOACH R. The modern design of experiments — A technical and marketing framework[R]. AIAA 2000-2691, 2000. doi: 10.2514/6.2000-2691
|
[2] |
DeLOACH R, HILL J S, TOMEK W G. Practical applications of response surface methods in the National Transonic Facility[R]. AIAA 2001-0167, 2001. doi: 10.2514/6.2001-167
|
[3] |
DeLOACH R. The modern design of experiments for configuration aerodynamics: a case study[R]. AIAA 2006-923, 2006. doi: 10.2514/6.2006-923
|
[4] |
DeLOACH R, PHILIPSEN I. Stepwise regression analysis of MDOE balance calibration data acquired at DNW[R]. AIAA 2007-144, 2007. doi: 10.2514/6.2007-144
|
[5] |
DeLOACH R. MDOE perspectives on wind tunnel testing objectives[R]. AIAA 2002-2796, 2002. doi: 10.2514/6.2002-2796
|
[6] |
DeLOACH R. Applications of modern experiment design to wind tunnel testing at NASA Langley Research Center[R]. AIAA 98-0713, 1998. doi: 10.2514/6.1998-713
|
[7] |
FISHER R A. The design of experiments[M]. 8th ed. Edinburgh: Oliver and Boyd, 1966.
|
[8] |
方开泰. 正交设计与均匀设计[M]. 北京: 高等教育出版社, 2002.
FANG K T. Orthogonal design and uniform design[M]. Beijing: Higher Education Press, 2002.
|
[9] |
任露泉. 试验优化设计与分析[M]. 2版. 北京: 高等教育出版社, 2003.
REN L Q. Optimum Design and Analysis of Experi-ments[M]. 2th ed. Beijing: Higher Education Press, 2003.
|
[10] |
VIANA F A C,VENTER G,BALABANOV V. An algorithm for fast optimal Latin hypercube design of experi-ments[J]. International Journal for Numerical Methods in Engineering,2010,82(2):135-156. doi: 10.1002/nme.2750
|
[11] |
KOCH P N,EVANS J P,POWELL D. Interdigitation for effective design space exploration using iSIGHT[J]. Structural and Multidisciplinary Optimization,2002,23(2):111-126. doi: 10.1007/s00158-002-0171-9
|
[12] |
CIOPPA T M,LUCAS T W. Efficient nearly orthogonal and space-filling Latin hypercubes[J]. Technometrics,2007,49(1):45-55. doi: 10.1198/004017006000000453
|
[13] |
MORRIS M D,MITCHELL T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference,1995,43(3):381-402. doi: 10.1016/0378-3758(94)00035-T
|
[14] |
FORRESTER A I J,KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences,2009,45(1-3):50-79. doi: 10.1016/j.paerosci.2008.11.001
|
[15] |
KEANE A, FORRESTER A, SOBESTER A. Engineering Design via Surrogate Modelling: A Practical Guide[M]. Washington, DC: AIAA, Inc. , 2008. doi: 10.2514/4.479557
|
[16] |
VAVALLE A,QIN N. Iterative response surface based optimization scheme for transonic airfoil design[J]. Journal of Aircraft,2007,44(2):365-376. doi: 10.2514/1.19688
|
[17] |
SACKS J,WELCH W J,MITCHELL T J,et al. Design and analysis of computer experiments: Rejoinder[J]. Statistical Science,1989,4(4):433-435. doi: 10.1214/ss/1177012420
|
[18] |
YAO L. An efficient robust concept exploration method and sequential exploratory experimental design[D]. Atlantic: Georgia Institute of Technology, 2004.
|
[19] |
江振宇,张为华,张磊. 虚拟试验设计中的序贯极大熵方法研究[J]. 系统仿真学报,2007,19(17):3876-3879,3973. DOI: 10.3969/j.issn.1004-731X.2007.17.003
JIANG Z Y,ZHANG W H,ZHANG L. Sequential maxi-mum entropy approach to design of virtual experiment[J]. Journal of System Simulation,2007,19(17):3876-3879,3973. doi: 10.3969/j.issn.1004-731X.2007.17.003
|
[20] |
LI G Z, AZARM S. Maximum accumulative error samplint strategy for approximation of deterministic engineering simu-lations[C]//Proc of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2006. doi: 10.2514/6.2006-7051
|
[21] |
JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization,2001,21(4):345-383. doi: 10.1023/A:1012771025575
|
[22] |
LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in kriging-based aerodynamic optimization[C]//Proc of 28th Congress of the International Council of the Aeronautical Sciences. 2012.
|
[23] |
HAN Z H, ZHANG K S. Surrogate-based optimization[M]// ROEVA O, Real-World Applications of Genetic Algorithms. Rijeka, Croatia: InTech Europe, 2002: 343-362. doi: 10.5772/36125
|
[24] |
JEONG S,MURAYAMA M,YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft,2005,42(2):413-420. doi: 10.2514/1.6386
|
[25] |
JONES D R,SCHONLAU M,WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization,1998,13(4):455-492. doi: 10.1023/A:1008306431147
|
[26] |
SASENA M J,PAPALAMBROS P,GOOVAERTS P. Exploration of metamodeling sampling criteria for con-strained global optimization[J]. Engineering Optimization,2002,34(3):263-278. doi: 10.1080/03052150211751
|
[27] |
程诗信. 面向气动外形优化的改进多目标粒子群算法研究[D]. 西安: 西北工业大学, 2018.
CHENG S X. Research on improved multi-objective particle swarm algorithm for aerodynamic shape optimization[D]. Xi'an: Northwestern Polytechnical University, 2018.
|
[28] |
王彦. 基于改进EGO算法的黑箱函数全局最优化[D]. 北京: 北京工业大学, 2014.
WANG Y. Global optimization of black-box function using improved EGO algorithm[D]. Beijing: Beijing University of Technology, 2014.
|
[29] |
PARR J M,KEANE A J,FORRESTER A I J,et al. Infill sampling criteria for surrogate-based optimization with constraint handling[J]. Engineering Optimization,2012,44(10):1147-1166. doi: 10.1080/0305215X.2011.637556
|
[30] |
姚雯,陈小前,罗文彩,等. 基于部分交叉验证的多准则序贯近似建模方法[J]. 系统工程与电子技术,2010,32(7):1462-1467. DOI: 10.3969/j.issn.1001-506X.2010.07.026
YAO W,CHEN X Q,LUO W C,et al. Multi-criterion sequential approximation modeling method based on partial cross validation[J]. Systems Engineering and Electronics,2010,32(7):1462-1467. doi: 10.3969/j.issn.1001-506X.2010.07.026
|
[31] |
GIUNTA A A, WOJTKIEWICZ S F Jr, ELDRED M S. Overview of modern design of experiments methods for computational simulations (invited)[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit. 2003: 649. doi: 10.2514/6.2003-649
|
[32] |
SWILER L P, SLEPOY R, GIUNTA A. Evaluation of sampling methods in constructing response surface approxima-tions[C]//Proc of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2006: 1827. doi: 10.2514/6.2006-1827
|
[33] |
杜丽,吕利叶,孙伟,等. 一种适用于约束空间的拉丁超立方取点策略[J]. 机械设计与制造,2021,366(8):43-47. DOI: 10.19356/j.cnki.1001-3997.2021.08.011
DU L,LV L Y,SUN W,et al. An Latin hypercube sampling approach for constrained design space[J]. Machinery Design & Manufacture,2021,366(8):43-47. doi: 10.19356/j.cnki.1001-3997.2021.08.011
|
[34] |
张泽斌,张鹏飞,郭红,等. Kriging序贯设计方法在滑动轴承优化中的应用[J]. 哈尔滨工业大学学报,2019,51(7):178-183. DOI: 10.11918/j.issn.0367-6234.201810147
ZHANG Z B,ZHANG P F,GUO H,et al. Implementation of Kriging model based sequential design on the optimiza-tion of sliding bearing[J]. Journal of Harbin Institute of Technology,2019,51(7):178-183. doi: 10.11918/j.issn.0367-6234.201810147
|
[35] |
BOOKER A J,DENNIS J E Jr,FRANK P D,et al. A rigorous framework for optimization of expensive functions by surrogates[J]. Structural Optimization,1999,17(1):1-13. doi: 10.1007/BF01197708
|
[36] |
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225. DOI: 10.7527/S1000-6893.2016.0083
HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225. doi: 10.7527/S1000-6893.2016.0083
|
[37] |
MARINO A, FAUCI R, DONELLI R, et al. Hypersonic laminar-turbulent transition experiment design: from wind tunnel model definition to MDOE approach[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-1112
|
[38] |
LI Y H,HUANG Y,WEI Z,et al. A case study of application of modern design of experiment methods in high speed wind tunnel test[J]. Applied Mechanics and Materials,2013,444:1229-1233. doi: 10.4028/www.scientific.net/AMM.444-445.1229
|
[39] |
方开泰, 刘民千, 周永道. 试验设计与建模[M]. 北京: 高等教育出版社, 2011: 201-223.
FANG K T, LIU M Q, ZHOU Y D. Design and Modeling of Experiments[M]. Beijing: Higher Education Press, 2011: 201-223.
|
[40] |
FANG K T,LIN D K J,WINKER P,et al. Uniform design: theory and application[J]. Technometrics,2000,42(3):237-248. doi: 10.1080/00401706.2000.10486045
|
[41] |
何磊,钱炜祺,汪清,等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报,2019,37(3):470-479. DOI: 10.7638/kqdlxxb-2019.0033
HE L,QIAN W Q,WANG Q,et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica,2019,37(3):470-479. doi: 10.7638/kqdlxxb-2019.0033
|
[42] |
LI X X,YANG K. Parametric exploration on the airfoil design space by numerical design of experiment methodology and multiple regression model[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2020,234(1):3-18. doi: 10.1177/0957650919850426
|
[43] |
KHANG D S,TAN R R,UY O M,et al. Design of experiments for global sensitivity analysis in life cycle assessment: the case of biodiesel in Vietnam[J]. Resources, Conservation and Recycling,2017,119:12-23. doi: 10.1016/j.resconrec.2016.08.016
|
[44] |
THURMAN C S,SOMERO J R. Comparison of meta-modeling methodologies through the statistical-empirical prediction modeling of hydrodynamic bodies[J]. Ocean Engineering,2020,210:107566. doi: 10.1016/j.oceaneng.2020.107566
|
[45] |
THIELE S,HEISE S,HESSENKEMPER W,et al. Design-ing optimal experiments to discriminate interaction graph models[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2018:2018Mar15. doi: 10.1109/TCBB.2018.2812184
|
[46] |
GOLOVNYA B P. Important properties of turbulent near-wall flows which are not accounted by modern rans models[J]. International Journal of Heat and Mass Transfer,2020,146:118813. doi: 10.1016/j.ijheatmasstransfer.2019.118813
|
[47] |
WANG L,TAO S,MENG X H,et al. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls[J]. Physical Review E,2020,101(6):063307. doi: 10.1103/physreve.101.063307
|
[48] |
MENG X H,KARNIADAKIS G E. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems[J]. Journal of Computational Physics,2020,401:109020. doi: 10.1016/j.jcp.2019.109020
|
[49] |
MENG X H,BABAEE H,KARNIADAKIS G E. Multi-fidelity Bayesian neural networks: Algorithms and applica-tions[J]. Journal of Computational Physics,2021,438:110361. doi: 10.1016/j.jcp.2021.110361
|
[50] |
鞠胜军,阎超,叶志飞. 吸气式高超声速飞行器多参数灵敏度分析[J]. 北京航空航天大学学报,2017,43(5):927-934. DOI: 10.13700/j.bh.1001-5965.2016.0354
JU S J,YAN C,YE Z F. Multi-parametric sensitivity analysis of air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(5):927-934. doi: 10.13700/j.bh.1001-5965.2016.0354
|
[51] |
刘深深,陈江涛,桂业伟,等. 基于数据挖掘的飞行器气动布局设计知识提取[J]. 航空学报,2021,42(4):524708. DOI: 10.7527/S10006893.2020.24708
LIU S S,CHEN J T,GUI Y W,et al. Knowledge discovery for vehicle aerodynamic configuration design using data mining[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4):524708. doi: 10.7527/S10006893.2020.24708
|
[52] |
李润泽,张宇飞,陈海昕. “人在回路” 思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报,2017,35(4):529-543. DOI: 10.7638/kqdlxxb-2017.0076
LI R Z,ZHANG Y F,CHEN H X. Evolution and development of “man-in-loop” in aerodynamic optimization design[J]. Acta Aerodynamica Sinica,2017,35(4):529-543. doi: 10.7638/kqdlxxb-2017.0076
|
[53] |
ROSCHER R,BOHN B,DUARTE M F,et al. Explainable machine learning for scientific insights and discoveries[J]. IEEE Access,2020,8:42200-42216. doi: 10.1109/ACCESS.2020.2976199
|
[54] |
张双圣,强静,刘汉湖,等. 基于拉丁超立方抽样的改进型多链DRAM算法求解地下水污染反问题[J]. 郑州大学学报(工学版),2020,41(3):72-78. DOI: 10.13705/j.issn.1671-6833.2019.02.016
ZHANG S S,QIANG J,LIU H H,et al. Improved multi-chain DRAM algorithm based on Latin hypercube sampling for inverse problems of underground water pollution[J]. Journal of Zhengzhou University(Engineering Science),2020,41(3):72-78. doi: 10.13705/j.issn.1671-6833.2019.02.016
|
[55] |
柏爱俊. 基于马尔科夫理论的不确定性规划和感知问题研究[D]. 合肥: 中国科学技术大学, 2014.
BAI A J. Markov theory based planning and sensing under uncertainty[D]. Hefei: University of Science and Technology of China, 2014.
|
1. |
刘春风,王瑞庭,王雪枫,何啸天,张婷婷. 基于现代试验设计的风洞天平校准方法. 空气动力学学报. 2024(03): 111-118 .
![]() |