Volume 36 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
HAI C L,HE L,MEI L Q,et al. Modern design of experiment and its development in aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):1-10. doi: 10.11729/syltlx20220005
Citation: HAI C L,HE L,MEI L Q,et al. Modern design of experiment and its development in aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):1-10. doi: 10.11729/syltlx20220005

Modern design of experiment and its development in aerodynamics

doi: 10.11729/syltlx20220005
  • Received Date: 2022-01-12
  • Accepted Date: 2022-02-25
  • Rev Recd Date: 2022-02-06
  • Available Online: 2022-05-17
  • Publish Date: 2022-07-04
  • The scientific experimental design method can significantly improve the quality and efficiency of scientific research and industrial production. This paper introduces and summarizes the research progress of modern test design methods. Firstly, this paper summarizes the differences between OFAT(One Fact at A Time) method and MDOE(Modern Design Of Experiments) method in the wind tunnel test in three aspects: the test purpose, organization strategy and test results, and analyzes the advantages of MDOE method. Secondly, it summarizes the status quo of the MDOE method in three aspects: the experimental design, model establish-ment and result analysis. Then we demonstrate the experimental design method with standard functions and aerodynamic examples. Finally, some key scientific problems and future research directions are discussed.
  • loading
  • [1]
    DeLOACH R. The modern design of experiments — A technical and marketing framework[R]. AIAA 2000-2691, 2000. doi: 10.2514/6.2000-2691
    [2]
    DeLOACH R, HILL J S, TOMEK W G. Practical applications of response surface methods in the National Transonic Facility[R]. AIAA 2001-0167, 2001. doi: 10.2514/6.2001-167
    [3]
    DeLOACH R. The modern design of experiments for configuration aerodynamics: a case study[R]. AIAA 2006-923, 2006. doi: 10.2514/6.2006-923
    [4]
    DeLOACH R, PHILIPSEN I. Stepwise regression analysis of MDOE balance calibration data acquired at DNW[R]. AIAA 2007-144, 2007. doi: 10.2514/6.2007-144
    [5]
    DeLOACH R. MDOE perspectives on wind tunnel testing objectives[R]. AIAA 2002-2796, 2002. doi: 10.2514/6.2002-2796
    [6]
    DeLOACH R. Applications of modern experiment design to wind tunnel testing at NASA Langley Research Center[R]. AIAA 98-0713, 1998. doi: 10.2514/6.1998-713
    [7]
    FISHER R A. The design of experiments[M]. 8th ed. Edinburgh: Oliver and Boyd, 1966.
    [8]
    方开泰. 正交设计与均匀设计[M]. 北京: 高等教育出版社, 2002.

    FANG K T. Orthogonal design and uniform design[M]. Beijing: Higher Education Press, 2002.
    [9]
    任露泉. 试验优化设计与分析[M]. 2版. 北京: 高等教育出版社, 2003.

    REN L Q. Optimum Design and Analysis of Experi-ments[M]. 2th ed. Beijing: Higher Education Press, 2003.
    [10]
    VIANA F A C,VENTER G,BALABANOV V. An algorithm for fast optimal Latin hypercube design of experi-ments[J]. International Journal for Numerical Methods in Engineering,2010,82(2):135-156. doi: 10.1002/nme.2750
    [11]
    KOCH P N,EVANS J P,POWELL D. Interdigitation for effective design space exploration using iSIGHT[J]. Structural and Multidisciplinary Optimization,2002,23(2):111-126. doi: 10.1007/s00158-002-0171-9
    [12]
    CIOPPA T M,LUCAS T W. Efficient nearly orthogonal and space-filling Latin hypercubes[J]. Technometrics,2007,49(1):45-55. doi: 10.1198/004017006000000453
    [13]
    MORRIS M D,MITCHELL T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference,1995,43(3):381-402. doi: 10.1016/0378-3758(94)00035-T
    [14]
    FORRESTER A I J,KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences,2009,45(1-3):50-79. doi: 10.1016/j.paerosci.2008.11.001
    [15]
    KEANE A, FORRESTER A, SOBESTER A. Engineering Design via Surrogate Modelling: A Practical Guide[M]. Washington, DC: AIAA, Inc. , 2008. doi: 10.2514/4.479557
    [16]
    VAVALLE A,QIN N. Iterative response surface based optimization scheme for transonic airfoil design[J]. Journal of Aircraft,2007,44(2):365-376. doi: 10.2514/1.19688
    [17]
    SACKS J,WELCH W J,MITCHELL T J,et al. Design and analysis of computer experiments: Rejoinder[J]. Statistical Science,1989,4(4):433-435. doi: 10.1214/ss/1177012420
    [18]
    YAO L. An efficient robust concept exploration method and sequential exploratory experimental design[D]. Atlantic: Georgia Institute of Technology, 2004.
    [19]
    江振宇,张为华,张磊. 虚拟试验设计中的序贯极大熵方法研究[J]. 系统仿真学报,2007,19(17):3876-3879,3973. doi: 10.3969/j.issn.1004-731X.2007.17.003

    JIANG Z Y,ZHANG W H,ZHANG L. Sequential maxi-mum entropy approach to design of virtual experiment[J]. Journal of System Simulation,2007,19(17):3876-3879,3973. doi: 10.3969/j.issn.1004-731X.2007.17.003
    [20]
    LI G Z, AZARM S. Maximum accumulative error samplint strategy for approximation of deterministic engineering simu-lations[C]//Proc of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2006. doi: 10.2514/6.2006-7051
    [21]
    JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization,2001,21(4):345-383. doi: 10.1023/A:1012771025575
    [22]
    LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in kriging-based aerodynamic optimization[C]//Proc of 28th Congress of the International Council of the Aeronautical Sciences. 2012.
    [23]
    HAN Z H, ZHANG K S. Surrogate-based optimization[M]// ROEVA O, Real-World Applications of Genetic Algorithms. Rijeka, Croatia: InTech Europe, 2002: 343-362. doi: 10.5772/36125
    [24]
    JEONG S,MURAYAMA M,YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft,2005,42(2):413-420. doi: 10.2514/1.6386
    [25]
    JONES D R,SCHONLAU M,WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization,1998,13(4):455-492. doi: 10.1023/A:1008306431147
    [26]
    SASENA M J,PAPALAMBROS P,GOOVAERTS P. Exploration of metamodeling sampling criteria for con-strained global optimization[J]. Engineering Optimization,2002,34(3):263-278. doi: 10.1080/03052150211751
    [27]
    程诗信. 面向气动外形优化的改进多目标粒子群算法研究[D]. 西安: 西北工业大学, 2018.

    CHENG S X. Research on improved multi-objective particle swarm algorithm for aerodynamic shape optimization[D]. Xi'an: Northwestern Polytechnical University, 2018.
    [28]
    王彦. 基于改进EGO算法的黑箱函数全局最优化[D]. 北京: 北京工业大学, 2014.

    WANG Y. Global optimization of black-box function using improved EGO algorithm[D]. Beijing: Beijing University of Technology, 2014.
    [29]
    PARR J M,KEANE A J,FORRESTER A I J,et al. Infill sampling criteria for surrogate-based optimization with constraint handling[J]. Engineering Optimization,2012,44(10):1147-1166. doi: 10.1080/0305215X.2011.637556
    [30]
    姚雯,陈小前,罗文彩,等. 基于部分交叉验证的多准则序贯近似建模方法[J]. 系统工程与电子技术,2010,32(7):1462-1467. doi: 10.3969/j.issn.1001-506X.2010.07.026

    YAO W,CHEN X Q,LUO W C,et al. Multi-criterion sequential approximation modeling method based on partial cross validation[J]. Systems Engineering and Electronics,2010,32(7):1462-1467. doi: 10.3969/j.issn.1001-506X.2010.07.026
    [31]
    GIUNTA A A, WOJTKIEWICZ S F Jr, ELDRED M S. Overview of modern design of experiments methods for computational simulations (invited)[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit. 2003: 649. doi: 10.2514/6.2003-649
    [32]
    SWILER L P, SLEPOY R, GIUNTA A. Evaluation of sampling methods in constructing response surface approxima-tions[C]//Proc of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2006: 1827. doi: 10.2514/6.2006-1827
    [33]
    杜丽,吕利叶,孙伟,等. 一种适用于约束空间的拉丁超立方取点策略[J]. 机械设计与制造,2021,366(8):43-47. doi: 10.19356/j.cnki.1001-3997.2021.08.011

    DU L,LV L Y,SUN W,et al. An Latin hypercube sampling approach for constrained design space[J]. Machinery Design & Manufacture,2021,366(8):43-47. doi: 10.19356/j.cnki.1001-3997.2021.08.011
    [34]
    张泽斌,张鹏飞,郭红,等. Kriging序贯设计方法在滑动轴承优化中的应用[J]. 哈尔滨工业大学学报,2019,51(7):178-183. doi: 10.11918/j.issn.0367-6234.201810147

    ZHANG Z B,ZHANG P F,GUO H,et al. Implementation of Kriging model based sequential design on the optimiza-tion of sliding bearing[J]. Journal of Harbin Institute of Technology,2019,51(7):178-183. doi: 10.11918/j.issn.0367-6234.201810147
    [35]
    BOOKER A J,DENNIS J E Jr,FRANK P D,et al. A rigorous framework for optimization of expensive functions by surrogates[J]. Structural Optimization,1999,17(1):1-13. doi: 10.1007/BF01197708
    [36]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225. doi: 10.7527/S1000-6893.2016.0083

    HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225. doi: 10.7527/S1000-6893.2016.0083
    [37]
    MARINO A, FAUCI R, DONELLI R, et al. Hypersonic laminar-turbulent transition experiment design: from wind tunnel model definition to MDOE approach[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-1112
    [38]
    LI Y H,HUANG Y,WEI Z,et al. A case study of application of modern design of experiment methods in high speed wind tunnel test[J]. Applied Mechanics and Materials,2013,444:1229-1233. doi: 10.4028/www.scientific.net/AMM.444-445.1229
    [39]
    方开泰, 刘民千, 周永道. 试验设计与建模[M]. 北京: 高等教育出版社, 2011: 201-223.

    FANG K T, LIU M Q, ZHOU Y D. Design and Modeling of Experiments[M]. Beijing: Higher Education Press, 2011: 201-223.
    [40]
    FANG K T,LIN D K J,WINKER P,et al. Uniform design: theory and application[J]. Technometrics,2000,42(3):237-248. doi: 10.1080/00401706.2000.10486045
    [41]
    何磊,钱炜祺,汪清,等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报,2019,37(3):470-479. doi: 10.7638/kqdlxxb-2019.0033

    HE L,QIAN W Q,WANG Q,et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica,2019,37(3):470-479. doi: 10.7638/kqdlxxb-2019.0033
    [42]
    LI X X,YANG K. Parametric exploration on the airfoil design space by numerical design of experiment methodology and multiple regression model[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2020,234(1):3-18. doi: 10.1177/0957650919850426
    [43]
    KHANG D S,TAN R R,UY O M,et al. Design of experiments for global sensitivity analysis in life cycle assessment: the case of biodiesel in Vietnam[J]. Resources, Conservation and Recycling,2017,119:12-23. doi: 10.1016/j.resconrec.2016.08.016
    [44]
    THURMAN C S,SOMERO J R. Comparison of meta-modeling methodologies through the statistical-empirical prediction modeling of hydrodynamic bodies[J]. Ocean Engineering,2020,210:107566. doi: 10.1016/j.oceaneng.2020.107566
    [45]
    THIELE S,HEISE S,HESSENKEMPER W,et al. Design-ing optimal experiments to discriminate interaction graph models[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2018:2018Mar15. doi: 10.1109/TCBB.2018.2812184
    [46]
    GOLOVNYA B P. Important properties of turbulent near-wall flows which are not accounted by modern rans models[J]. International Journal of Heat and Mass Transfer,2020,146:118813. doi: 10.1016/j.ijheatmasstransfer.2019.118813
    [47]
    WANG L,TAO S,MENG X H,et al. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls[J]. Physical Review E,2020,101(6):063307. doi: 10.1103/physreve.101.063307
    [48]
    MENG X H,KARNIADAKIS G E. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems[J]. Journal of Computational Physics,2020,401:109020. doi: 10.1016/j.jcp.2019.109020
    [49]
    MENG X H,BABAEE H,KARNIADAKIS G E. Multi-fidelity Bayesian neural networks: Algorithms and applica-tions[J]. Journal of Computational Physics,2021,438:110361. doi: 10.1016/j.jcp.2021.110361
    [50]
    鞠胜军,阎超,叶志飞. 吸气式高超声速飞行器多参数灵敏度分析[J]. 北京航空航天大学学报,2017,43(5):927-934. doi: 10.13700/j.bh.1001-5965.2016.0354

    JU S J,YAN C,YE Z F. Multi-parametric sensitivity analysis of air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(5):927-934. doi: 10.13700/j.bh.1001-5965.2016.0354
    [51]
    刘深深,陈江涛,桂业伟,等. 基于数据挖掘的飞行器气动布局设计知识提取[J]. 航空学报,2021,42(4):524708. doi: 10.7527/S10006893.2020.24708

    LIU S S,CHEN J T,GUI Y W,et al. Knowledge discovery for vehicle aerodynamic configuration design using data mining[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4):524708. doi: 10.7527/S10006893.2020.24708
    [52]
    李润泽,张宇飞,陈海昕. “人在回路” 思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报,2017,35(4):529-543. doi: 10.7638/kqdlxxb-2017.0076

    LI R Z,ZHANG Y F,CHEN H X. Evolution and development of “man-in-loop” in aerodynamic optimization design[J]. Acta Aerodynamica Sinica,2017,35(4):529-543. doi: 10.7638/kqdlxxb-2017.0076
    [53]
    ROSCHER R,BOHN B,DUARTE M F,et al. Explainable machine learning for scientific insights and discoveries[J]. IEEE Access,2020,8:42200-42216. doi: 10.1109/ACCESS.2020.2976199
    [54]
    张双圣,强静,刘汉湖,等. 基于拉丁超立方抽样的改进型多链DRAM算法求解地下水污染反问题[J]. 郑州大学学报(工学版),2020,41(3):72-78. doi: 10.13705/j.issn.1671-6833.2019.02.016

    ZHANG S S,QIANG J,LIU H H,et al. Improved multi-chain DRAM algorithm based on Latin hypercube sampling for inverse problems of underground water pollution[J]. Journal of Zhengzhou University(Engineering Science),2020,41(3):72-78. doi: 10.13705/j.issn.1671-6833.2019.02.016
    [55]
    柏爱俊. 基于马尔科夫理论的不确定性规划和感知问题研究[D]. 合肥: 中国科学技术大学, 2014.

    BAI A J. Markov theory based planning and sensing under uncertainty[D]. Hefei: University of Science and Technology of China, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (2187) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return