Citation: | LI Z P,ZHOU R X,MENG F Z,et al. Supersonic combustion sensing by the passive endoscopic flame sensor[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):102-114.. DOI: 10.11729/syltlx20220004 |
[1] |
GARCÍA-ARMINGOL T,HARDALUPAS Y,TAYLOR A M K P,et al. Effect of local flame properties on chemiluminescence-based stoichiometry measurement[J]. Experimental Thermal and Fluid Science,2014,53:93-103. doi: 10.1016/j.expthermflusci.2013.11.009
|
[2] |
MASHIO S, KURASHINA K, BAMBA T, et al. Unstart phenomenon due to thermal choke in scramjet module[C]//Proc of the 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. 2001: 1887. doi: 10.2514/6.2001-1887
|
[3] |
SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power,1993,9(4):515-520. doi: 10.2514/3.23653
|
[4] |
SCHULTZ I A, GOLDENSTEIN C S, STRAND C L, et al. Hypersonic scramjet testing via TDLAS measurements of temperature and column density in a reflected shock tunnel[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014. doi: 10.2514/6.2014-0389
|
[5] |
SCHULTZ I A, GOLDENSTEIN C S, JEFFRIES J B, et al. Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1241. doi: 10.2514/6.2014-1241
|
[6] |
AIZENGENDLER M, KRISHNA Y, KURTZ J, et al. A rugged, high-sensitivity, TDLAS-based oxygen sensor for a scramjet inlet[C]// Proc of Busan, KOREA. 2013.
|
[7] |
姚路,刘文清,阚瑞峰,等. 小型化TDLAS发动机测温系统的研究及进展[J]. 实验流体力学,2015,29(1):71-76. DOI: 10.11729/syltlx20140025
YAO L,LIU W Q,KAN R F,et al. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics,2015,29(1):71-76. doi: 10.11729/syltlx20140025
|
[8] |
GUO J, GUO J, LIAO W, et al. TDLAS-based measurements of temperature and velocity in the combustor of scramjet[C]// 中国工程热物理学会会议论文集. 2012.
|
[9] |
FURLONG E R,BAER D S,HANSON R K. Real-time adaptive combustion control using diode-laser absorption sensors[J]. Symposium (International) on Combustion,1998,27(1):103-111. doi: 10.1016/S0082-0784(98)80395-0
|
[10] |
EBERT V,FERNHOLZ T,GIESEMANN C,et al. Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant[J]. Proceedings of the Combustion Institute,2000,28(1):423-430. doi: 10.1016/S0082-0784(00)80239-8
|
[11] |
MILLER M F,KESSLER W J,ALLEN M G. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets[J]. Applied Optics,1996,35(24):4905. doi: 10.1364/ao.35.004905
|
[12] |
LEE D, ANDERSON T. Measurements of fuel/air-acoustic coupling in lean premixed combustion systems[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-450
|
[13] |
LEE J G,KIM K,SANTAVICCA D A. Measurement of equivalence ratio fluctuation and its effect on heat release during unstable combustion[J]. Proceedings of the Combustion Institute,2000,28(1):415-421. doi: 10.1016/S0082-0784(00)80238-6
|
[14] |
MICKA D, TORREZ S, DRISCOLL J. Heat release distribution in a dual-mode scramjet combustor-measurements and modeling[C]//Proc of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 2009: 7362. doi: 10.2514/6.2009-7362
|
[15] |
MULLA I A,DOWLUT A,HUSSAIN T,et al. Heat release rate estimation in laminar premixed flames using laser-induced fluorescence of CH2O and H-atom[J]. Combustion and Flame,2016,165:373-383. doi: 10.1016/j.combustflame.2015.12.023
|
[16] |
DANDY D S,VOSEN S R. Numerical and experimental studies of hydroxyl radical chemiluminescence in methane-air flames[J]. Combustion Science and Technology,1992,82(1-6):131-150. doi: 10.1080/00102209208951816
|
[17] |
KOJIMA J,IKEDA Y,NAKAJIMA T. Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames[J]. Proceedings of the Combustion Institute,2000,28(2):1757-1764. doi: 10.1016/S0082-0784(00)80577-9
|
[18] |
HIGGINS B,MCQUAY M Q,LACAS F,et al. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames[J]. Fuel,2001,80(11):1583-1591. doi: 10.1016/S0016-2361(01)00040-0
|
[19] |
NORI V N,SEITZMAN J M. CH chemiluminescence modeling for combustion diagnostics[J]. Proceedings of the Combustion Institute,2009,32(1):895-903. doi: 10.1016/j.proci.2008.05.050
|
[20] |
IKEDA Y, HASHIMOTO H, NAKAJIMA T, et al. Detailed local spectra measurement in high-pressure premixed laminar flame[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002. doi: 10.2514/6.2002-191
|
[21] |
HARDALUPAS Y,ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame,2004,139(3):188-207. doi: 10.1016/j.combustflame.2004.08.003
|
[22] |
LIU Y,TAN J G,WANG H,et al. Characterization of heat release rate by OH* and CH* chemiluminescence[J]. Acta Astronautica,2019,154:44-51. doi: 10.1016/j.actaastro.2018.10.022
|
[23] |
SOLTANIAN H,TARGHI M Z,PASDARSHAHRI H. Chemiluminescence usage in finding optimum operating range of multi-hole burners[J]. Energy,2019,180:398-404. doi: 10.1016/j.energy.2019.05.104
|
[24] |
YUAN Y M,ZHANG T C,YAO W,et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute,2017,36(2):2919-2925. doi: 10.1016/j.proci.2016.07.040
|
[25] |
CAO D G,BROD H E,YOKEV N,et al. Flame stabilization and local combustion modes in a cavity-based scramjet using different fuel injection schemes[J]. Combustion and Flame,2021,233:111562. doi: 10.1016/j.combustflame.2021.111562
|
[26] |
王宽亮, 李飞, 曾徽, 等. 三维火焰层析重构技术探究[C]//高温气体动力学国家重点实验室2016年度夏季学术研讨会论文集. 2016.
|
[27] |
MICKA D J, KNAUS D A, TEMME J, et al. Passive optical combustion sensors for scramjet engine control[C]//Proc of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. 2015: 3947. doi: 10.2514/6.2015-3947
|
[28] |
孟宇. 超燃冲压发动机加速过程及等离子体对超声速火焰结构的影响[D]. 北京: 中国科学院大学, 2019.
|
[29] |
连欢,顾洪斌,周芮旭,等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学,2021,35(1):97-108. DOI: 10.11729/syltlx20200069
LIAN H,GU H B,ZHOU R X,et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics,2021,35(1):97-108. doi: 10.11729/syltlx20200069
|
[30] |
唐鑫,严聪. 双模态超燃冲压发动机研究概述[J]. 飞航导弹,2012(3):86-92. doi: 10.11729/syltlx20200069
|
[31] |
FOTIA M L,DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power,2012,29(1):261-273. doi: 10.2514/1.B34486
|
[32] |
肖保国,晏至辉,田野,等. 超燃发动机燃烧模态判别准则初步研究[J]. 推进技术,2015,36(8):1121-1126. DOI: 10.3969/j.issn.1672-9897.2003.01.022
XIAO B G,YAN Z H,TIAN Y,et al. Preliminary study on criterion of indentifying combustion mode for scramjet[J]. Journal of Propulsion Technology,2015,36(8):1121-1126. doi: 10.3969/j.issn.1672-9897.2003.01.022
|
[33] |
张鹏,俞刚. 超燃燃烧室一维流场分析模型的研究[J]. 流体力学实验与测量,2003,17(1):88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022
|
[34] |
王振国. 超声速气流中的火焰稳定与传播[M]. 北京: 科学出版社, 2015.
|
[35] |
ROSSITER J. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[C]. Proc of Aeronautical Research Council Reports and Memo. 1964. doi: 10.2514/3.9334
|
[36] |
HELLER H, BLISS D. The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression[C]//Proc of the 2nd Aeroacoustics Conference. 1975: 491. doi: 10.2514/6.1975-491
|
[37] |
CHOU T, PATTERSON D J. Hydrocarbon emission sequence related to cylinder mal-distribution in a L-head engine[C]//Proc of the SAE Technical Paper Series. 1994. doi: 10.4271/940305
|
1. |
李强,操小龙. 超声速进气道压力估算方法及验证. 航空工程进展. 2020(06): 894-899 .
![]() |