JIANG H,WANG B F,CHONG K L,et al. Reconstruction of turbulent fields based on super-resolution reconstruction method[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):102-109.. DOI: 10.11729/syltlx20210185
Citation: JIANG H,WANG B F,CHONG K L,et al. Reconstruction of turbulent fields based on super-resolution reconstruction method[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):102-109.. DOI: 10.11729/syltlx20210185

Reconstruction of turbulent fields based on super-resolution reconstruction method

More Information
  • Received Date: November 28, 2021
  • Revised Date: March 03, 2022
  • Accepted Date: March 07, 2022
  • Available Online: April 20, 2022
  • It is an important issue to obtain detailed flow fields from limited flow fields data. The convolutional-neural-networks-based super-resolution reconstruction methods developed in recent years are effective methods to obtain detailed flow fields. The efficient sub-pixel convolutional neural network(ESPCN) method is used to reconstruct Rayleigh–Bénard(RB) convection numerical simulation data and turbulent boundary layer(TBL) experimental measured data, and obtain high resolution flow fields data. The reconstructed high resolution flow fields data obtained using ESPCN is then compared to the results from the traditional super-resolution reconstruction method, the bicubic interpolation method. The results indicate that the flow fields reconstructed by the ESPCN method and the bicubic method agree well with the original high-resolution flow fields data when the down-sampling ratio is small. But, when the down-sampling ratio is large, the accuracy of the flow fields reconstructed by the ESPCN method is significantly better than that constructed by the bicubic method. In addition, the ESPCN method has a better performance than the bicubic method in areas with large gradients.
  • [1]
    ADRIAN R J. Twenty years of particle image velocimetry[J]. Experiments in Fluids,2005,39(2):159-169. doi: 10.1007/s00348-005-0991-7
    [2]
    WANG Z J,FIDKOWSKI K,ABGRALL R,et al. High-order CFD methods: current status and perspective[J]. International Journal for Numerical Methods in Fluids,2013,72(8):811-845. doi: 10.1002/fld.3767
    [3]
    郭中州,何志强,赵文文,等. 高效非结构网格变形与流场插值方法[J]. 航空学报,2018,39(12):126-137. DOI: 10.7527/S1000-6893.2018.22411

    GUO Z Z,HE Z Q,ZHAO W W,et al. Efficient mesh deformation and flowfield interpolation method for unstruc-tured mesh[J]. Acta Aeronautica Et Astronautica Sinica,2018,39(12):126-137. doi: 10.7527/S1000-6893.2018.22411
    [4]
    TÖLKE J,KRAFCZYK M. Second order interpolation of the flow field in the lattice Boltzmann method[J]. Computers & Mathematics With Applications,2009,58(5):898-902. doi: 10.1016/j.camwa.2009.02.012
    [5]
    DRUAULT P,GUIBERT P,ALIZON F. Use of proper orthogonal decomposition for time interpolation from PIV data[J]. Experiments in Fluids,2005,39(6):1009-1023. doi: 10.1007/s00348-005-0035-3
    [6]
    GUNES H,RIST U. Spatial resolution enhancement/smoothing of stereo-particle-image-velocimetry data using proper-orthogonal-decomposition-based and Kriging inter-polation methods[J]. Physics of Fluids,2007,19(6):064101. doi: 10.1063/1.2740710
    [7]
    ROESGEN T. Optimal subpixel interpolation in particle image velocimetry[J]. Experiments in Fluids,2003,35(3):252-256. doi: 10.1007/s00348-003-0627-8
    [8]
    DUNLOP G R. A rapid computational method for improve-ments to nearest neighbour interpolation[J]. Computers & Mathematics With Applications,1980,6(3):349-353. doi: 10.1016/0898-1221(80)90042-5
    [9]
    BLU T,THÉVENAZ P,UNSER M. Linear interpolation revitalized[J]. IEEE Transactions on Image Processing,2004,13(5):710-719. doi: 10.1109/tip.2004.826093
    [10]
    CARLSON R E,FRITSCH F N. Monotone piecewise bicubic interpolation[J]. SIAM Journal on Numerical Analysis,1985,22(2):386-400. doi: 10.1137/0722023
    [11]
    DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Computer Vision – ECCV 2014, 2014: 184-199. doi: 10.1007/978-3-319-10593-2_13
    [12]
    DONG C,LOY C C,HE K M,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. doi: 10.1109/TPAMI.2015.2439281
    [13]
    DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//Computer Vision – ECCV 2016, 2016: 391-407. doi: 10.1007/978-3-319-46475-6_25
    [14]
    SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1874-1883. doi: 10.1109/CVPR.2016.207
    [15]
    LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 105-114. doi: 10.1109/CVPR.2017.19
    [16]
    HE C X,WANG P,LIU Y Z. Sequential data assimilation of turbulent flow and pressure fields over aerofoil[J]. AIAA Journal,2021,60(2):1091-1103. doi: 10.2514/1.J060697
    [17]
    DENG Z W,CHEN Y J,LIU Y Z,et al. Time-resolved turbulent velocity field reconstruction using a long short-term memory(LSTM)-based artificial intelligence framework[J]. Physics of Fluids,2019,31(7):075108. doi: 10.1063/1.5111558
    [18]
    谢晨月,袁泽龙,王建春,等. 基于人工神经网络的湍流大涡模拟方法[J]. 力学学报,2021,53(1):1-16. DOI: 10.6052/0459-1879-20-420

    XIE C Y,YUAN Z L,WANG J C,et al. Artificial neural network-based subgrid-scale models for large-eddy simula-tion of turbulence[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(1):1-16. doi: 10.6052/0459-1879-20-420
    [19]
    XIE C Y,WANG J C,LI H,et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids,2019,31(8):085112. doi: 10.1063/1.5110788
    [20]
    LI K,KOU J Q,ZHANG W W. Unsteady aerodynamic reduced-order modeling based on machine learning across multiple airfoils[J]. Aerospace Science and Technology,2021,119:107173. doi: 10.1016/j.ast.2021.107173
    [21]
    张伟伟,寇家庆,刘溢浪. 智能赋能流体力学展望[J]. 航空学报,2021,42(4):524689-524689. DOI: 10.7527/S1000-6893.2020.24689

    ZHANG W W,KOU J Q,LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4):524689-524689. doi: 10.7527/S1000-6893.2020.24689
    [22]
    WERHAHN M,XIE Y,CHU M Y,et al. A multi-pass GAN for fluid flow super-resolution[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques,2019,2(2):1-21. doi: 10.1145/3340251
    [23]
    FUKAMI K,FUKAGATA K,TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics,2019,870:106-120. doi: 10.1017/jfm.2019.238
    [24]
    FUKAMI K,FUKAGATA K,TAIRA K. Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows[J]. Journal of Fluid Mechanics,2021,909:A9. doi: 10.1017/jfm.2020.948
    [25]
    LIU B,TANG J P,HUANG H B,et al. Deep learning methods for super-resolution reconstruction of turbulent flows[J]. Physics of Fluids,2020,32(2):025105. doi: 10.1063/1.5140772
    [26]
    DENG Z W,HE C X,LIU Y Z,et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Physics of Fluids,2019,31(12):125111. doi: 10.1063/1.5127031
    [27]
    BAI K,LI W,DESBRUN M,et al. Dynamic upsampling of smoke through dictionary-based learning[J]. ACM Transactions on Graphics,2021,40(1):1-19. doi: 10.1145/3412360
    [28]
    GAO H,SUN L N,WANG J X. Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels[J]. Physics of Fluids,2021,33(7):073603. doi: 10.1063/5.0054312
    [29]
    KIM H,KIM J,WON S,et al. Unsupervised deep learning for super-resolution reconstruction of turbulence[J]. Journal of Fluid Mechanics,2021,910:A29. doi: 10.1017/jfm.2020.1028
    [30]
    SCHRÖDER A,GEISLER R,STAACK K,et al. Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV[J]. Experiments in Fluids,2011,50(4):1071-1091. doi: 10.1007/s00348-010-1014-x
  • Cited by

    Periodical cited type(5)

    1. 胡炜,李敬轩,杨立军,张玥,梁炫烨. 不完全角度背景纹影层析测量综述. 火箭推进. 2024(06): 1-26 .
    2. 冯晓鸥,金熠,翟超. 化学发光火焰三维重建研究综述. 实验流体力学. 2023(02): 1-15 . 本站查看
    3. 李响,雷庆春,徐文江,范玮. 基于计算层析成像的火焰三维重建算法研究. 燃烧科学与技术. 2023(06): 660-666 .
    4. 管今哥,卫娜瑛,郑永秋,陈坤. 基于同步共轴结构的辐射层析测温仪设计. 仪器仪表学报. 2023(09): 239-247 .
    5. 娄春,张鲁栋,蒲旸,张仲侬,李智聪,陈鹏飞. 基于自发辐射分析的被动式燃烧诊断技术研究进展. 实验流体力学. 2021(01): 1-17 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (2099) PDF downloads (208) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close