Citation: | JIANG H,WANG B F,CHONG K L,et al. Reconstruction of turbulent fields based on super-resolution reconstruction method[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):102-109.. DOI: 10.11729/syltlx20210185 |
[1] |
ADRIAN R J. Twenty years of particle image velocimetry[J]. Experiments in Fluids,2005,39(2):159-169. doi: 10.1007/s00348-005-0991-7
|
[2] |
WANG Z J,FIDKOWSKI K,ABGRALL R,et al. High-order CFD methods: current status and perspective[J]. International Journal for Numerical Methods in Fluids,2013,72(8):811-845. doi: 10.1002/fld.3767
|
[3] |
郭中州,何志强,赵文文,等. 高效非结构网格变形与流场插值方法[J]. 航空学报,2018,39(12):126-137. DOI: 10.7527/S1000-6893.2018.22411
GUO Z Z,HE Z Q,ZHAO W W,et al. Efficient mesh deformation and flowfield interpolation method for unstruc-tured mesh[J]. Acta Aeronautica Et Astronautica Sinica,2018,39(12):126-137. doi: 10.7527/S1000-6893.2018.22411
|
[4] |
TÖLKE J,KRAFCZYK M. Second order interpolation of the flow field in the lattice Boltzmann method[J]. Computers & Mathematics With Applications,2009,58(5):898-902. doi: 10.1016/j.camwa.2009.02.012
|
[5] |
DRUAULT P,GUIBERT P,ALIZON F. Use of proper orthogonal decomposition for time interpolation from PIV data[J]. Experiments in Fluids,2005,39(6):1009-1023. doi: 10.1007/s00348-005-0035-3
|
[6] |
GUNES H,RIST U. Spatial resolution enhancement/smoothing of stereo-particle-image-velocimetry data using proper-orthogonal-decomposition-based and Kriging inter-polation methods[J]. Physics of Fluids,2007,19(6):064101. doi: 10.1063/1.2740710
|
[7] |
ROESGEN T. Optimal subpixel interpolation in particle image velocimetry[J]. Experiments in Fluids,2003,35(3):252-256. doi: 10.1007/s00348-003-0627-8
|
[8] |
DUNLOP G R. A rapid computational method for improve-ments to nearest neighbour interpolation[J]. Computers & Mathematics With Applications,1980,6(3):349-353. doi: 10.1016/0898-1221(80)90042-5
|
[9] |
BLU T,THÉVENAZ P,UNSER M. Linear interpolation revitalized[J]. IEEE Transactions on Image Processing,2004,13(5):710-719. doi: 10.1109/tip.2004.826093
|
[10] |
CARLSON R E,FRITSCH F N. Monotone piecewise bicubic interpolation[J]. SIAM Journal on Numerical Analysis,1985,22(2):386-400. doi: 10.1137/0722023
|
[11] |
DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Computer Vision – ECCV 2014, 2014: 184-199. doi: 10.1007/978-3-319-10593-2_13
|
[12] |
DONG C,LOY C C,HE K M,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. doi: 10.1109/TPAMI.2015.2439281
|
[13] |
DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//Computer Vision – ECCV 2016, 2016: 391-407. doi: 10.1007/978-3-319-46475-6_25
|
[14] |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1874-1883. doi: 10.1109/CVPR.2016.207
|
[15] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 105-114. doi: 10.1109/CVPR.2017.19
|
[16] |
HE C X,WANG P,LIU Y Z. Sequential data assimilation of turbulent flow and pressure fields over aerofoil[J]. AIAA Journal,2021,60(2):1091-1103. doi: 10.2514/1.J060697
|
[17] |
DENG Z W,CHEN Y J,LIU Y Z,et al. Time-resolved turbulent velocity field reconstruction using a long short-term memory(LSTM)-based artificial intelligence framework[J]. Physics of Fluids,2019,31(7):075108. doi: 10.1063/1.5111558
|
[18] |
谢晨月,袁泽龙,王建春,等. 基于人工神经网络的湍流大涡模拟方法[J]. 力学学报,2021,53(1):1-16. DOI: 10.6052/0459-1879-20-420
XIE C Y,YUAN Z L,WANG J C,et al. Artificial neural network-based subgrid-scale models for large-eddy simula-tion of turbulence[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(1):1-16. doi: 10.6052/0459-1879-20-420
|
[19] |
XIE C Y,WANG J C,LI H,et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids,2019,31(8):085112. doi: 10.1063/1.5110788
|
[20] |
LI K,KOU J Q,ZHANG W W. Unsteady aerodynamic reduced-order modeling based on machine learning across multiple airfoils[J]. Aerospace Science and Technology,2021,119:107173. doi: 10.1016/j.ast.2021.107173
|
[21] |
张伟伟,寇家庆,刘溢浪. 智能赋能流体力学展望[J]. 航空学报,2021,42(4):524689-524689. DOI: 10.7527/S1000-6893.2020.24689
ZHANG W W,KOU J Q,LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4):524689-524689. doi: 10.7527/S1000-6893.2020.24689
|
[22] |
WERHAHN M,XIE Y,CHU M Y,et al. A multi-pass GAN for fluid flow super-resolution[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques,2019,2(2):1-21. doi: 10.1145/3340251
|
[23] |
FUKAMI K,FUKAGATA K,TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics,2019,870:106-120. doi: 10.1017/jfm.2019.238
|
[24] |
FUKAMI K,FUKAGATA K,TAIRA K. Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows[J]. Journal of Fluid Mechanics,2021,909:A9. doi: 10.1017/jfm.2020.948
|
[25] |
LIU B,TANG J P,HUANG H B,et al. Deep learning methods for super-resolution reconstruction of turbulent flows[J]. Physics of Fluids,2020,32(2):025105. doi: 10.1063/1.5140772
|
[26] |
DENG Z W,HE C X,LIU Y Z,et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Physics of Fluids,2019,31(12):125111. doi: 10.1063/1.5127031
|
[27] |
BAI K,LI W,DESBRUN M,et al. Dynamic upsampling of smoke through dictionary-based learning[J]. ACM Transactions on Graphics,2021,40(1):1-19. doi: 10.1145/3412360
|
[28] |
GAO H,SUN L N,WANG J X. Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels[J]. Physics of Fluids,2021,33(7):073603. doi: 10.1063/5.0054312
|
[29] |
KIM H,KIM J,WON S,et al. Unsupervised deep learning for super-resolution reconstruction of turbulence[J]. Journal of Fluid Mechanics,2021,910:A29. doi: 10.1017/jfm.2020.1028
|
[30] |
SCHRÖDER A,GEISLER R,STAACK K,et al. Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV[J]. Experiments in Fluids,2011,50(4):1071-1091. doi: 10.1007/s00348-010-1014-x
|
1. |
胡炜,李敬轩,杨立军,张玥,梁炫烨. 不完全角度背景纹影层析测量综述. 火箭推进. 2024(06): 1-26 .
![]() | |
2. |
冯晓鸥,金熠,翟超. 化学发光火焰三维重建研究综述. 实验流体力学. 2023(02): 1-15 .
![]() | |
3. |
李响,雷庆春,徐文江,范玮. 基于计算层析成像的火焰三维重建算法研究. 燃烧科学与技术. 2023(06): 660-666 .
![]() | |
4. |
管今哥,卫娜瑛,郑永秋,陈坤. 基于同步共轴结构的辐射层析测温仪设计. 仪器仪表学报. 2023(09): 239-247 .
![]() | |
5. |
娄春,张鲁栋,蒲旸,张仲侬,李智聪,陈鹏飞. 基于自发辐射分析的被动式燃烧诊断技术研究进展. 实验流体力学. 2021(01): 1-17 .
![]() |