Volume 37 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
ZHANG S, PANG R, JIANG L H, et al. A temperature measurement technique based on fluorescence intensity ratio of rare earth Dy ion[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 115-124 doi: 10.11729/syltlx20210176
Citation: ZHANG S, PANG R, JIANG L H, et al. A temperature measurement technique based on fluorescence intensity ratio of rare earth Dy ion[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 115-124 doi: 10.11729/syltlx20210176

A temperature measurement technique based on fluorescence intensity ratio of rare earth Dy ion

doi: 10.11729/syltlx20210176
  • Received Date: 2021-11-04
  • Accepted Date: 2022-01-30
  • Rev Recd Date: 2021-12-31
  • Available Online: 2022-09-13
  • Publish Date: 2023-04-25
  • Large area surface temperature measurement technology is of great significance in the field of wind tunnel temperature measurement. In order to meet the needs of measurement for higher surface temperature, it is urgent to develop new temperature sensing materials and new temperature measurement technology. Temperature measurement based on the fluorescence intensity ratio of the thermal coupling energy levels of rare earth ions is a new temperature measurement technology. In this work, a temperature sensitive luminescent material (YAG:Dy) was synthesized. The corresponding relationship between the temperature and the ratio of emission intensity of the thermal coupling energy levels of rare earth Dy3+ ions (4F9/26H15/2, 4I15/26H15/2) was investigated in the temperature range from 50 to 1000 ℃. Based on this material, a comparative experiment of two temperature measurements that the fluorescence intensity ratio measurement and the infrared thermometer is carried out. It is shown that the measurement results of the two technologies have a high degree of agreement, which proves that the temperature sensitive luminescent material (YAG:Dy) can be used for temperature measurement in the range of 50–1000 ℃.
  • loading
  • [1]
    钱炜祺, 周宇, 何开锋, 等. 表面热流辨识技术在边界层转捩位置测量中的应用初步研究[J]. 实验流体力学, 2012, 26(1): 74–78. doi: 10.3969/j.issn.1672-9897.2012.01.015

    QIAN W Q, ZHOU Y, HE K F, et al. A preliminary study for application of surface heat flux estimation technology in transition measurement[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 74–78. doi: 10.3969/j.issn.1672-9897.2012.01.015
    [2]
    韩曙光, 贾广森, 文帅, 等. 磷光热图技术在常规高超声速风洞热环境实验中的应用[J]. 气体物理, 2017, 2(4): 56–63. doi: 10.19527/j.cnki.2096-1642.2017.04.006

    HAN S G, JIA G S, WEN S, et al. Heat transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility[J]. Physics of Gases, 2017, 2(4): 56–63. doi: 10.19527/j.cnki.2096-1642.2017.04.006
    [3]
    HAN S G, WEN S, WU C H, et al. Global heat-flux measurements using phosphor thermography technique in gun tunnel[C]//Proc of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2015. doi: 10.2514/6.2015-3517
    [4]
    KLEIN C, YORITA D, HENNE U, et al. Application of Temperature Sensitive Paint to investigate laminar-to-turbulent transition on nacelles[C]//Proc of the AIAA Scitech 2020 Forum. 2020: 1608. doi: 10.2514/6.2020-1608
    [5]
    BUCK G. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system[C]//Proc of the 29th Aerospace Sciences Meeting. 1991: 64. doi: 10.2514/6.1991-64
    [6]
    THOMPSON R A, HARRIS H H II, BERRY S A, et al. Hypersonic boundary layer transition for X-33 Phase II vehicle[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998: 867. doi: 10.2514/6.1998-867
    [7]
    张扣立, 周嘉穗, 孔荣宗, 等. CARDC 激波风洞 TSP 技术研究进展[J]. 空气动力学学报, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151

    ZHANG K L, ZHOU J S, KONG R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151
    [8]
    毕志献, 韩曙光, 伍超华, 等. 磷光热图测热技术研究[J]. 实验流体力学, 2013, 27(3): 87–92. doi: 10.3969/j.issn.1672-9897.2013.03.017

    BI Z X, HAN S G, WU C H, et al. Phosphor thermography study in gun tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 87–92. doi: 10.3969/j.issn.1672-9897.2013.03.017
    [9]
    刘祥, 熊健, 马护生, 等. 温敏漆校准及图像后处理方法研究[J]. 实验流体力学, 2020, 34(4): 53–61. doi: 10.11729/syltlx20190054

    LIU X, XIONG J, MA H S, et al. The calibration and image post-processing method research of temperature-sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 53–61. doi: 10.11729/syltlx20190054
    [10]
    江小峰, 李亚东, 李欣, 等. 基于荧光寿命机理的光纤温度传感器研究[J]. 分析测试技术与仪器, 2015, 21(2): 124–128. doi: 10.16495/j.1006-3757.2015.02.011

    JIANG X F, LI Y D, LI X, et al. Fiber temperature sensor based on fluorescent lifetime[J]. Analysis and Testing Technology and Instruments, 2015, 21(2): 124–128. doi: 10.16495/j.1006-3757.2015.02.011
    [11]
    李心悦. 基于发光材料的温度探测新机制探索[D]. 合肥: 中国科学技术大学, 2016.

    LI X Y. The new mechanisms based on luminescent materials for temperature sensing[D]. Hefei: University of Science and Technology of China, 2016.
    [12]
    芦泓宇. 基于稀土掺杂上转换材料荧光峰值比的温度传感[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LU H Y. Temperature sensing of rare earth doped upconversion materials based on fluorescence intensity ratio technique[D]. Harbin: Harbin Institute of Technology, 2017.
    [13]
    田媛媛. 稀土离子掺杂铌酸盐微纳米材料的上转换发光及温度传感特性的研究[D]. 太原: 太原理工大学, 2017.

    TIAN Y Y. Study of upconversion luminescence and temperature sensing behavior of rare earth ions doped niobate micro-/nanoparticles[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [14]
    FU J P, PANG R, JIANG L H, et al. A novel dichromic self-referencing optical probe SrO:Bi3+, Eu3+ for temperature spatially and temporally imaging[J]. Dalton Transactions, 2016, 45(34): 13317–13323. doi: 10.1039/c6dt01552b
    [15]
    LI H F, PANG R, SUN W Z, et al. Sr1.7Zn0.3CeO4F0.2:Eu3+: novel dual-emission temperature sensors for remote, non-contact thermometric application[J]. RSC Advances, 2017, 7(16): 9645–9652. doi: 10.1039/c6ra25092k
    [16]
    SHI L L, LI C Y, SU Q. Temperature-dependent photoluminescence properties of Sr2CeO4:Eu3+ and its modi-fication for use in fluorescence thermometry[J]. Optics Letters, 2011, 36(4): 582–584. doi: 10.1364/OL.36.000582
    [17]
    张洪杰, 李成宇, 周亮, 等. 稀土发光材料及器件的制备与应用[C]//第七届全国稀土发光材料学术研讨会会议论文摘要集. 2011.

    ZHANG H J, LI C Y, ZHOU L, et al. Preparation and application of rare earth luminescent materials and devices [C]//Proceedings of the 7th National Conference on rare earth luminescent materials. 2011.
    [18]
    ALLISON S W, BESHEARS D L, BENCIC T, et al. Development of temperature-sensitive paints for high-temperature aeropropulsion applications[C]//Proc of the 37th Joint Propulsion Conference and Exhibit. 2001: 3528. doi: 10.2514/6.2001-3528
    [19]
    FLORES-BRITO W, WESTPHAL E, WILBURN B R, et al. Study of sensitivity vs. excitation time of LED excited thermographic phosphors[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 2106. doi: 10.2514/6.2019-2106
    [20]
    EVSTROPIEV S K, Demidov V V, BULYGA D V, et al. YAG:R3+ (R=Ce, Dy, Yb) nanophosphor-based luminescent fibre-optic sensors for temperature measurements in the range 20–500 °C[J]. Quantum Electronics, 2022, 52(1): 94–99. doi: 10.1070/QEL17971
    [21]
    KONTIS K, YOSHIKAWA N. Surface thermography by laser-induced fluorescence for transient heat transfer measurements in high-speed flows[C]//Proc of the 17th Applied Aerodynamics Conference. 1999: 3170. doi: 10.2514/6.1999-3170
    [22]
    CHAMBERS M D, CLARKE D R. Doped oxides for high-temperature luminescence and lifetime thermometry[J]. Annual Review of Materials Research, 2009, 39: 325–359. doi: 10.1146/annurev-matsci-112408-125237
    [23]
    CHEPYGA L M, JOVICIC G, VETTER A, et al. Photoluminescence properties of thermographic phosphors YAG:Dy and YAG:Dy, Er doped with boron and nitrogen[J]. Applied Physics B, 2016, 122(8): 1–10. doi: 10.1007/s00340-016-6487-8
    [24]
    HASHEMI A, VETTER A, JOVICIC G, et al. Temperature measurements using YAG:Dy and YAG:Sm under diode laser excitation (405 nm)[J]. Measurement Science and Technology, 2015, 26(7): 075202. doi: 10.1088/0957-0233/26/7/075202
    [25]
    ISHIWADA N, FUJII E, YOKOMORI T. Evaluation of Dy-doped phosphors (YAG:Dy, Al2O3:Dy, and Y2SiO5:Dy) as thermographic phosphors[J]. Journal of Luminescence, 2018, 196: 492–497. doi: 10.1016/j.jlumin.2017.11.045
    [26]
    KLIMCZAK M, MALINOWSKI M, SARNECKI J, et al. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides[J]. Journal of Luminescence, 2009, 129(12): 1869–1873. doi: 10.1016/j.jlumin.2009.04.073
    [27]
    REGMI A R, ALLISON S W, OLENICK K, et al. High temperature phosphor thermometry with YAG:Dy and LED excitation on flexible YSZ ceramic ribbons[J]. MRS Communications, 2021, 11(3): 322–329. doi: 10.1557/s43579-021-00046-8
    [28]
    ALLISON S W, BESHEARS D L, CATES M R, et al. Luminescence of YAG:Dy and YAG:Dy, Er crystals to 1700 ℃[J]. Measurement Science and Technology, 2020, 31(4): 044001. doi: 10.1088/1361-6501/ab4ebd
    [29]
    FLORES-BRITO W, MAHAFFEY J, VACKEL A, et al. Aerosol deposition of dysprosium-doped yttrium-aluminum-garnet for phosphor thermography applications[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 2102. doi: 10.2514/6.2019-2102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (552) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return