YUAN X,YU X,PENG J B,et al. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):30-36.. DOI: 10.11729/syltlx20210150
Citation: YUAN X,YU X,PENG J B,et al. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):30-36.. DOI: 10.11729/syltlx20210150

Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)

More Information
  • Received Date: September 29, 2021
  • Revised Date: January 03, 2022
  • Accepted Date: January 05, 2022
  • Available Online: September 22, 2022
  • In view of the urgent need of scramjet combustion diagnosis, especially the visualization of flame space structure, it needs to realize three–dimensional measurement of the supersonic flames. The Three Dimensional Laser–Induced Fluorescence (3DLIF) technology can realize the visualization of the flame combustion space. For the supersonic coaxial jet combustion, a scanning galvanometer multi–plane 3DLIF experimental device was built, and a laser sheet shaping scheme with expanded scanning range was proposed, which realizes the multi–plane 3DLIF visualization of the supersonic flames. The interpolation algorithm was used to reconstruct the three–dimensional average image of supersonic flame with a spatial scale of 50 mm×85 mm×20 mm and a time scale of 5 ms, which verifies the feasibility of using the 3DLIF technology to visualize the combustion space structure of the scramjet test bench. The effect of the flame speed on the flame structure shape using the three–dimensional images is discussed.
  • [1]
    金台. 超声速湍流燃烧多物理耦合的直接数值模拟研究[D]. 杭州: 浙江大学, 2015.

    JIN T. Direct numerical simulation of coupled multi-physics in supersonic turbulent combustion[D]. Hangzhou: Zhejiang University, 2015.
    [2]
    朱家健,万明罡,吴戈,等. 激光诱导荧光技术燃烧诊断的研究进展[J]. 中国激光,2021,48(4):0401005. DOI: 10.3788/CJL202148.0401005

    ZHU J J,WAN M G,WU G,et al. Research progress of laser-induced fluorescence technology in combustion diagno-stics[J]. Chinese Journal of Lasers,2021,48(4):0401005. doi: 10.3788/CJL202148.0401005
    [3]
    吴戈,李韵,万明罡,等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学,2020,34(3):70-77. DOI: 10.11729/syltlx20190168

    WU G,LI Y,WAN M G,et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics,2020,34(3):70-77. doi: 10.11729/syltlx20190168
    [4]
    PRASAD R R,SREENIVASAN K R. Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows[J]. Journal of Fluid Mechanics,1990,216:1-34. doi: 10.1017/s0022112090000325
    [5]
    CHO K Y, SATIJA A, POURPOINT T L, et al. Time-resolved 3D OH planar laser-induced fluorescence system for multiphase combustion[C]//Proc of the 8th US National Combustion Meeting. 2013.
    [6]
    WELLANDER R,RICHTER M,ALDÉN M. Time resolved,3D imaging (4D) of two phase flow at a repetition rate of 1 kHz[J]. Optics Express,2011,19(22):21508-21514. doi: 10.1364/OE.19.021508
    [7]
    XU W J,LIU N,MA L. Super resolution PLIF demon-strated in turbulent jet flows seeded with I2[J]. Optics & Laser Technology,2018,101:216-222. doi: 10.1016/j.optlastec.2017.11.024
    [8]
    黄真理,周维虎,曲兆松. 三维激光诱导荧光(3DLIF)技术及测量水体标量场设备研究[J]. 实验流体力学,2017,31(5):1-14. DOI: 10.11729/syltlx20160173

    HUANG Z L,ZHOU W H,QU Z S. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics,2017,31(5):1-14. doi: 10.11729/syltlx20160173
    [9]
    WELLANDER R,RICHTER M,ALDÉN M. Time-resolved(kHz) 3D imaging of OH PLIF in a flame[J]. Experiments in Fluids,2014,55(6):1-12. doi: 10.1007/s00348-014-1764-y
    [10]
    KRISTENSSON E,LI Z M,BERROCAL E,et al. Instantaneous 3D imaging of flame species using coded laser illumination[J]. Proceedings of the Combustion Institute,2017,36(3):4585-4591. doi: 10.1016/j.proci.2016.08.040
    [11]
    LI T,PAREJA J,FUEST F,et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science and Technology,2018,29(1):015206. doi: 10.1088/1361-6501/aa938a
    [12]
    HALLS B R, JIANG N B, THUL D J, et al. High-speed, three-dimensional tomographic imaging of concentration fields in turbulent flows[C]//Proc of the Conference on Lasers and Electro-Optics. 2016. doi: 10.1364/cleo_at.2016.aw4k.2
    [13]
    MA L, XU W J, LEI Q C, et al. Single-shot 3D flame imaging using CH-based VLIF (volumetric laser induced fluorescence)[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-4028
    [14]
    PENG J B,CAO Z,YU X,et al. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decompo-sition[J]. International Journal of Hydrogen Energy,2020,45(23):13108-13118. doi: 10.1016/j.ijhydene.2020.02.216
    [15]
    YU X,CAO Z,PENG J B,et al. Statistical analysis of flame oscillation characterization of oxy-fuel in heavy oil boiler using OH planar laser-induced fluorescence[J]. Journal of Spectroscopy,2019,2019:7085232. doi: 10.1155/2019/7085232
    [16]
    MILLER V A,TROUTMAN V A,HANSON R K. Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene[J]. Measurement Science and Technology,2014,25(7):075403. doi: 10.1088/0957-0233/25/7/075403
    [17]
    刘冰,何国强,秦飞. 乙烯高速射流点火过程试验研究[J]. 实验流体力学,2018,32(2):24-27. DOI: 10.11729/syltlx20180003

    LIU B,HE G Q,QIN F. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experi-ments in Fluid Mechanics,2018,32(2):24-27. doi: 10.11729/syltlx20180003
    [18]
    McRAE C D,JOHANSEN C T,DANEHY P M,et al. Image analysis of hydroxyl-radical planar laser-induced fluorescence in turbulent supersonic combustion[J]. Journal of Propulsion and Power,2016,32(3):542-559. doi: 10.2514/1.b35611
    [19]
    PENG J B,CAO Z,YU X,et al. Continuous 500-Hz OH-PLIF measurements in a hydrogen-fueled scramjet combustor[J]. Frontiers in Physics,2020,8:101. doi: 10.3389/fphy.2020.00101
  • Related Articles

    [1]Xu Shangcheng, Wang Yi, Su Dan, Fan Xiaoqiang, Wang Zhenguo. Experimental study on hysteresis phenomenon of hypersonic inlet caused by variations of angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 76-82. DOI: 10.11729/syltlx20190010
    [2]Jiang Zenghui, Song Wei, Chen Nong, Jia Quyao. Hypersonic wind tunnel drop-model test on cover ejection from cargo projectile at large angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 42-48. DOI: 10.11729/syltlx20160020
    [3]JIAO Yu-qin, WANG Long, GAO Yong-wei, XIAO Chun-sheng. Research on wind tunnel test technique for airfoil at very high angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 102-108. DOI: 10.3969/j.issn.1672-9897.2013.04.019
    [4]ZHANG Zheng-yu, YU Bo, HUANG Shi-jie, WANG Shui-liang, SUN Yan. Videogrammetric measurement of attack angle and its precision investigation in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 88-92. DOI: 10.3969/j.issn.1672-9897.2013.01.016
    [5]TANG Qiao-qiao, ZHANG Wei-guo, LIU Zhong-hua, CHEN Hong. Research and application of the continuous scan technique to the high angle of attack equipment in 8m×6m wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 81-85. DOI: 10.3969/j.issn.1672-9897.2012.02.018
    [6]SUN Hai-sheng, ZHANG Hui, TANG Geng-sheng, WANG Chao-qi. The development of high angle of attack test equipment in the 8m×6m low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 70-73. DOI: 10.3969/j.issn.1672-9897.2009.01.016
    [7]TIAN Xue-shi, SI Yong-chang. The study on the test uncertainty level at high angles of attack for domestic capital low-speed wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 73-76. DOI: 10.3969/j.issn.1672-9897.2007.01.015
    [8]ZHU Ming-hong, WANG Xun-nian, ZHANG Jun, SUN Chuan-bao. Study on high angle of attack test technique of rear sting supports[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(2): 25-29,35. DOI: 10.3969/j.issn.1672-9897.2006.02.005
    [9]Research on the tests technology at high angles of attack in 2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 43-48. DOI: 10.3969/j.issn.1672-9897.2004.04.010
    [10]Preliminary research on super-high angle of attack test techniques in a high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(3): 36-42. DOI: 10.3969/j.issn.1672-9897.2001.03.007
  • Cited by

    Periodical cited type(5)

    1. 胡炜,李敬轩,杨立军,张玥,梁炫烨. 不完全角度背景纹影层析测量综述. 火箭推进. 2024(06): 1-26 .
    2. 冯晓鸥,金熠,翟超. 化学发光火焰三维重建研究综述. 实验流体力学. 2023(02): 1-15 . 本站查看
    3. 李响,雷庆春,徐文江,范玮. 基于计算层析成像的火焰三维重建算法研究. 燃烧科学与技术. 2023(06): 660-666 .
    4. 管今哥,卫娜瑛,郑永秋,陈坤. 基于同步共轴结构的辐射层析测温仪设计. 仪器仪表学报. 2023(09): 239-247 .
    5. 娄春,张鲁栋,蒲旸,张仲侬,李智聪,陈鹏飞. 基于自发辐射分析的被动式燃烧诊断技术研究进展. 实验流体力学. 2021(01): 1-17 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (498) PDF downloads (66) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close