Multi-parameter measurement of aerodynamic load via flexible sensing skin
-
-
Abstract
Aerodynamic characteristics of aircraft are critical for the design and security evaluation of aircraft structures. Wind tunnel test is the most effective experimental method, which is faced with the problems of structure damage and fewer parameters measurement. Herein, we propose a conformal measurement technique based on flexible sensing skin integrated with variety of ultra-thin flexible sensors, that are attached on surface of aircrafts consistently by kirigami assembly strategy. The sensing skin can simultaneously obtain multiple aerodynamic parameters like static pressure, pulsating pressure, temperature and wall shear force, without changing the surface morphology of the structure. Experiments on NACA0012 wing and aircraft tail under variable wind speed and variable angle of attack are carried out in the direct wind tunnel, jet platform and FL–9 wind tunnel. The characteristics of parameters collected in the wind tunnel are analyzed, which proves the availability of the system, paving a way for simultaneous measurement of various aerodynamic characteristics by flexible sensing skin in wind tunnel experiments.
-
-