Citation: | ZHU H J,WANG Q,MEI X H,et al. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):49-73.. DOI: 10.11729/syltlx20210110 |
[1] |
RAFFEL M, WILLERT C E, WERELEY S T, et al. Particle image velocimetry: a practical guide[M]. Berlin, Heidelberg: Springer Press, 2018. doi: 10.1007/978-3-540-72308-0
|
[2] |
孙冬,张春梅,吴剑华. 几种典型流动测量技术的原理及应用现状[J]. 辽宁化工,2007,36(2):131-135. DOI: 10.3969/j.issn.1004-0935.2007.02.020
SUN D,ZHANG C M,WU J H. Principle and application status for several kinds of typical technology of flow measurement[J]. Liaoning Chemical Industry,2007,36(2):131-135. doi: 10.3969/j.issn.1004-0935.2007.02.020
|
[3] |
SCHLATTER P,ÖRLÜ R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics,2010,659:116-126. doi: 10.1017/s0022112010003113
|
[4] |
MAAS H G,GRUEN A,PAPANTONIOU D. Particle track-ing velocimetry in three-dimensional flows[J]. Experiments in Fluids,1993,15(2):133-146. doi: 10.1007/BF00190953
|
[5] |
MENG H,PAN G,PU Y,et al. Holographic particle image velocimetry: from film to digital recording[J]. Measurement Science and Technology,2004,15(4):673-685. doi: 10.1088/0957-0233/15/4/009
|
[6] |
ELSINGA G E,SCARANO F,WIENEKE B,et al. Tomographic particle image velocimetry[J]. Experiments in Fluids,2006,41(6):933-947. doi: 10.1007/s00348-006-0212-z
|
[7] |
KITZHOFER J,BRÜCKER C. Tomographic particle track-ing velocimetry using telecentric imaging[J]. Experiments in Fluids,2010,49(6):1307-1324. doi: 10.1007/s00348-010-0879-z
|
[8] |
SHI S X,DING J F,NEW T H,et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids,2017,58(7):1-16. doi: 10.1007/s00348-017-2365-3
|
[9] |
RIENITZ J. Schlieren experiment 300 years ago[J]. Nature,1975,254(5498):293-295. doi: 10.1038/254293a0
|
[10] |
FOUCAULT L. Memoire sur la construction des telescopes en verre argente[J]. Annales de I’Observatoire Imperial de Paris,1859,5:197-237.
|
[11] |
DRAPER H. On the construction of a silvered glass tele-scope, fifteen and a half inches aperture, and its use in cele-stial photography[M]. Washington: Smithsonian institution, 1864. doi: 10.5962/bhl.title.32724
|
[12] |
TOEPLER A. Beobachtungen nach der schlierenmethode[M]. Ostwald’s Klassiker der Exakten Wissenschaften, 1906.
|
[13] |
SETTLES G S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media[M]. Berlin, Heidelberg: Springer Press, 2006: 6-7.
|
[14] |
MACH E,SALCHER P. Photographische fixirung der durch projectile in der luft eingeleiteten vorgänge[J]. Annalen Der Physik,1887,268(10):277-291. doi: 10.1002/andp.18872681008
|
[15] |
DVOŘÁK V. Ueber eine neue einfache Art der Schlieren-beobachtung[J]. Annalen Der Physik Und Chemie,1880,245,9(3):502-511. doi: 10.1002/andp.18802450309
|
[16] |
WEINBERG F J. Optics of flames, including methods for the study of refractive index fields in combustion and aerodynamics[M]. London: Butterworths and Company(Publishers) Limited, 1963. doi: 10.1017/S0001924000062904
|
[17] |
冯天植,刘成民,赵润祥,等. 纹影技术述评[J]. 弹道学报,1994,6(2):89-96.
FENG T Z,LIU C M,ZHAO R X,et al. Schlieren methods: a review of techniques[J]. Journal of Ballistics,1994,6(2):89-96.
|
[18] |
李素循,倪招勇. 高超声速层流干扰流场研究[J]. 宇航学报,2003,24(6):547-551,573. DOI: 10.3321/j.issn:1000-1328.2003.06.001
LI S X,NI Z Y,. Investigation of Laminar interactive flowfield in hypersonic flow[J]. Journal of Astronautics,2003,24(6):547-551,573. doi: 10.3321/j.issn:1000-1328.2003.06.001
|
[19] |
吴继飞,王元靖,罗新福,等. 高超声速风洞多体干扰与分离试验技术[J]. 实验流体力学,2010,24(3):99-102. DOI: 10.3969/j.issn.1672-9897.2010.03.021
WU J F,WANG Y J,LUO X F,et al. A test technique for multi-boby interference and separation in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2010,24(3):99-102. doi: 10.3969/j.issn.1672-9897.2010.03.021
|
[20] |
HOWES W L. Rainbow schlieren vs Mach-Zehnder interfero-meter: a comparison[J]. Applied Optics,1985,24(6):816-822. doi: 10.1364/ao.24.000816
|
[21] |
HOWES W L. Rainbow schlieren[M]. Washington: National Aeronautics and Space Administration, Scientific and Tech-nical Information Branch, 1983.
|
[22] |
冯天植. 彩色纹影技术探讨[J]. 南京理工大学学报(自然科学版),1984,8(2):167-176. DOI: 10.14177/j.cnki.32-1397n.1984.02.013
FENG T Z. The discussion about techniques of colored schlieren[J]. Journal of Nanjing University of Science and Technology,1984,8(2):167-176. doi: 10.14177/j.cnki.32-1397n.1984.02.013
|
[23] |
蒋冠雷,洪延姬,叶继飞,等. 彩虹纹影定量测量实验方法研究[J]. 装备指挥技术学院学报,2012,23(1):127-131. DOI: 10.3783/j.issn.1673-0127.2012.01.028
JIANG G L,HONG Y J,YE J F,et al. Experimental investigation of the quantitative measurement by rainbow schlieren[J]. Journal of the Academy of Equipment Command & Technology,2012,23(1):127-131. doi: 10.3783/j.issn.1673-0127.2012.01.028
|
[24] |
吴文堂,洪延姬,叶继飞,等. 冲击射流的彩虹纹影实验研究[J]. 实验流体力学,2014,28(2):65-68. DOI: 10.11729/syltlx20130055
WU W T,HONG Y J,YE J F,et al. Experimental research on supersonic impinging jet by rainbow schlieren[J]. Journal of Experiments in Fluid Mechanics,2014,28(2):65-68. doi: 10.11729/syltlx20130055
|
[25] |
FUKUNAGA R,ISLAM M M,AWATA Y,et al. Application of rainbow schlieren deflectometry for jets from round Laval nozzles followed by cylindrical ducts[J]. Journal of Flow Control, Measurement & Visualization,2021,9(2):15-27. doi: 10.4236/jfcmv.2021.92002
|
[26] |
ALVAREZ-HERRERA C,MORENO-HERNÁNDEZ D,BARRIENTOS-GARCÍA B. Temperature measurement of an axisymmetric flame by using a schlieren system[J]. Journal of Optics A: Pure and Applied Optics,2008,10(10):104014. doi: 10.1088/1464-4258/10/10/104014
|
[27] |
ALVAREZ-HERRERA C,MORENO-HERNÁNDEZ D,BARRIENTOS-GARCÍA B,et al. Temperature measure-ment of air convection using a schlieren system[J]. Optics & Laser Technology,2009,41(3):233-240. doi: 10.1016/j.optlastec.2008.07.004
|
[28] |
MEIER G. New optical tools for fluid mechanics[J]. Sadhana,1998,23(5-6):557-567. doi: 10.1007/BF02744579
|
[29] |
GOLDHAHN E, ALHAJ O, HERBST F, et al. Quantita-tive measurements of three-dimensional density fields using the background oriented schlieren technique[M]//Imaging Measurement Methods for Flow Analysis. Berlin, Heidelberg:Springer Press, 2009: 135-144. doi: 10.1007/978-3-642-01106-1_14
|
[30] |
GOLDHAHN E,SEUME J. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids,2007,43(2-3):241-249. doi: 10.1007/s00348-007-0331-1
|
[31] |
张俊,胥頔,张龙. 基于BOS技术的密度场测量研究[J]. 实验流体力学,2015,29(1):77-82. DOI: 10.11729/syltlx20140029
ZHANG J,XU D,ZHANG L. Research on density measurement based on background oriented schlieren method[J]. Journal of Experiments in Fluid Mechanics,2015,29(1):77-82. doi: 10.11729/syltlx20140029
|
[32] |
孟晟,杨臧健,王明晓,等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学,2015,29(4):65-69. DOI: 10.11729/syltlx20140117
MENG S,YANG Z J,WANG M X,et al. Application of quantitative schlieren method in flame temperature mea-surement[J]. Journal of Experiments in Fluid Mechanics,2015,29(4):65-69. doi: 10.11729/syltlx20140117
|
[33] |
LIU H C,HUANG J Q,LI L,et al. Volumetric imaging of flame refractive index, density, and temperature using background-oriented Schlieren tomography[J]. Science China Technological Sciences,2021,64(1):98-110. doi: 10.1007/s11431-020-1663-5
|
[34] |
GOLDSTEIN R. Fluid mechanics measurements[M]. 2nd ed. Boca Raton: Routledge, 2017. doi: 10.1201/9780203755723
|
[35] |
SETTLES G S,HACKETT E B,MILLER J D,et al. Full-scale schlieren flow visualization[J]. Flow Visualization,1995,7:2-13.
|
[36] |
EDGERTON H E. Shock wave photography of large subjects in daylight[J]. Review of Scientific Instruments,1958,29(2):171-172. doi: 10.1063/1.1716129
|
[37] |
DENNIS K,MALEY L,LIANG Z,et al. Implementation of large scale shadowgraphy in hydrogen explosion pheno-mena[J]. International Journal of Hydrogen Energy,2014,39(21):11346-11353. doi: 10.1016/j.ijhydene.2014.05.002
|
[38] |
WEINSTEIN L M. Large-field high-brightness focusing schlieren system[J]. AIAA Journal,1993,31(7):1250-1255. doi: 10.2514/3.11760
|
[39] |
徐翔,谢爱民,吕治国,等. 聚焦纹影显示技术在激波风洞的初步应用[J]. 实验流体力学,2009,23(3):75-79. DOI: 10.3969/j.issn.1672-9897.2009.03.016
XU X,XIE A M,LÜ Z G,et al. Application of focusing schlieren visualization system in shock tunnel experiment[J]. Journal of Experiments in Fluid Mechanics,2009,23(3):75-79. doi: 10.3969/j.issn.1672-9897.2009.03.016
|
[40] |
RICHARD H,RAFFEL M. Principle and applications of the background oriented schlieren (BOS) method[J]. Measurement Science and Technology,2001,12(9):1576-1585. doi: 10.1088/0957-0233/12/9/325
|
[41] |
AGRAWAL A K,BUTUK N K,GOLLAHALLI S R,et al. Three-dimensional rainbow schlieren tomography of a temperature field in gas flows[J]. Applied Optics,1998,37(3):479-485. doi: 10.1364/ao.37.000479
|
[42] |
KESSLER T J,HILL W G. A color schlieren system[J]. Photographic Applications in Science, Technology and Medicine,1974,9:22-24.
|
[43] |
TOWNEND H C H. A method of air flow cinematography capable of quantitative analysis[J]. Journal of the Aeronautical Sciences,1936,3(10):343-352. doi: 10.2514/8.267
|
[44] |
McINTYRE S, SETTLES G. Optical experiments on axisymmetric compressible turbulent mixing layers[C]//Proc of the 29th Aerospace Sciences Meeting. 1991. doi: 10.2514/6.1991-623
|
[45] |
KEGERISE M A, SETTLES G S. Schlieren image-correlation velocimetry and its application to free-convection flows[C]//Proc of the 9th International Symposium on Flow Visualization. 2000.
|
[46] |
JONASSEN D R,SETTLES G S,TRONOSKY M D. Schlieren “PIV” for turbulent flows[J]. Optics and Lasers in Engineering,2006,44(3-4):190-207. doi: 10.1016/j.optlaseng.2005.04.004
|
[47] |
BISWAS S,QIAO L. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet[J]. Experiments in Fluids,2017,58(3):1-20. doi: 10.1007/s00348-017-2305-2
|
[48] |
OZAWA Y, NONOMURA T, ASAI K. Comparison of time-averaged supersonic jet profile acquired by particle image velocimetry and shadowgraph velocimetry using single pixel ensemble correlation[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0322
|
[49] |
HORN B K P,SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence,1981,17(1-3):185-203. doi: 10.1016/0004-3702(81)90024-2
|
[50] |
BERGEN J R, ANANDAN P, HANNA K J, et al. Hierarchical model-based motion estimation[M]//Computer Vision—ECCV'92. Berlin, Heidelberg: Springer Press, 1992: 237-252. doi: 10.1007/978-1-4615-3236-1_1
|
[51] |
BLACK M J,ANANDAN P. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields[J]. Computer Vision and Image Understanding,1996,63(1):75-104. doi: 10.1006/cviu.1996.0006
|
[52] |
FU S,WU Y J. Detection of velocity distribution of a flow field using sequences of Schlieren images[J]. Optical Engineering,2001,40(8):1661. doi: 10.1117/1.1386792
|
[53] |
SUTER. Motion estimation and vector splines[C]//Proc of the 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1994: 939-942. doi: 10.1109/CVPR.1994.323929
|
[54] |
CORPETTI T,HEITZ D,ARROYO G,et al. Fluid experimental flow estimation based on an optical-flow scheme[J]. Experiments in Fluids,2006,40(1):80-97. doi: 10.1007/s00348-005-0048-y
|
[55] |
LIU T S,SHEN L X. Fluid flow and optical flow[J]. Journal of Fluid Mechanics,2008,614:253-291. doi: 10.1017/s0022112008003273
|
[56] |
ARNAUD E, MÉMIN E, SOSA R, et al. A fluid motion estimator for schlieren image velocimetry[M]//Computer Vision – ECCV 2006. Berlin, Heidelberg: Springer Press, 2006: 198-210. doi: 10.1007/11744023_16
|
[57] |
WANG Q,WU Y,CHENG H T,et al. A schlieren motion estimation method for seedless velocimetry measurement[J]. Experimental Thermal and Fluid Science,2019,109:109880. doi: 10.1016/j.expthermflusci.2019.109880
|
[58] |
SUN D Q, ROTH S, BLACK M J. Secrets of optical flow estimation and their principles[C]//Proc of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010: 2432-2439. doi: 10.1109/CVPR.2010.5539939
|
[59] |
WANG Q,MEI X H,WU Y,et al. An optimization and parametric study of a schlieren motion estimation method[J]. Flow, Turbulence and Combustion,2021,107(3):609-630. doi: 10.1007/s10494-021-00246-1
|
[60] |
ESTEVADEORDAL J, GOSS L. PIV with LED: Particle Shadow Velocimetry (PSV)[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-37
|
[61] |
GOSS L P, ESTEVADEORDAL J, CRAFTON J W. Velocity measurements near walls, cavities, and model surfaces using particle shadow velocimetry (PSV)[C]//Proc of the 2007 22nd International Congress on Instrumenta-tion in Aerospace Simulation Facilities. 2007: 1-8. doi: 10.1109/ICIASF.2007.4380874
|
[62] |
BRÖDER D,SOMMERFELD M. Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows[J]. Measurement Science and Technology,2007,18(8):2513-2528. doi: 10.1088/0957-0233/18/8/028
|
[63] |
TUNG K Y,LI C C,YANG J T. Mixing and hydro-dynamic analysis of a droplet in a planar serpentine micromixer[J]. Microfluidics and Nanofluidics,2009,7(4):545-557. doi: 10.1007/s10404-009-0415-8
|
[64] |
BHARTI O S,SAHA A K,DAS M K,et al. Simultaneous measurement of velocity and temperature fields during natural convection in a water-filled cubical cavity[J]. Experimental Thermal and Fluid Science,2018,99:272-286. doi: 10.1016/j.expthermflusci.2018.07.039
|
[65] |
BHARTI O S,SAHA A K,DAS M K. Sensitivity analysis of schlieren-particle image velocimetry system for simultaneous measurement of flow and temperature field of a free convective flow inside a cubic cavity[J]. Journal of Thermal Science and Engineering Applications,2022,14(5):051005. doi: 10.1115/1.4051878
|
[66] |
CORNIC P,LECLAIRE B,CHAMPAGNAT F,et al. Double-frame tomographic PTV at high seeding densities[J]. Experiments in Fluids,2020,61(2):1-24. doi: 10.1007/s00348-019-2859-2
|
[67] |
WILLNEFF J. A spatio-temporal matching algorithm for 3D particle tracking velocimetry[D]. Zurich, Switzerland: Swiss Federal Institute of Technology, 2003. doi: 10.3929/ethz-a-004620286
|
[68] |
GAO Q,WANG H P,SHEN G X. Review on development of volumetric particle image velocimetry[J]. Chinese Science Bulletin,2013,58(36):4541-4556. doi: 10.1007/s11434-013-6081-y
|
[69] |
KATZ J,SHENG J. Applications of holography in fluid mechanics and particle dynamics[J]. Annual Review of Fluid Mechanics,2010,42(1):531-555. doi: 10.1146/annurev-fluid-121108-145508
|
[70] |
BAO X L,LI M G. Defocus and binocular vision based stereo particle pairing method for 3D particle tracking velocimetry[J]. Optics and Lasers in Engineering,2011,49(5):623-631. doi: 10.1016/j.optlaseng.2011.01.015
|
[71] |
JUX C. Robotic volumetric particle tracking velocimetry by coaxial imaging and illumination[J]. Delft University of Technology and Technical University of Denmark, 2017.
|
[72] |
WANG Y H, IDOUGHI R, HEIDRICH W. Stereo event-based particle tracking velocimetry for 3D fluid flow reconstruction[C]//Computer Vision – ECCV 2020. 2020: 36-53. doi: 10.1007/978-3-030-58526-6_3
|
[73] |
SCHANZ D,GESEMANN S,SCHRÖDER A,et al. Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction[J]. Measurement Science and Technology,2013,24(2):024009. doi: 10.1088/0957-0233/24/2/024009
|
[74] |
WU Y, WANG Q, ZHAO C Y, et al. Three-dimensional particle tracking velocimetry with a stereoscopic shadow-graph system[C]// Proc of the 11th Australasian Natural Convection Workshop. 2019.
|
[75] |
WANG Q,ZHANG Y. High speed stereoscopic shadow-graph imaging and its digital 3D reconstruction[J]. Measurement Science and Technology,2011,22(6):065302. doi: 10.1088/0957-0233/22/6/065302
|
[76] |
SCHNEIDERS J F G,SCARANO F,JUX C,et al. Coaxial volumetric velocimetry[J]. Measurement Science and Technology,2018,29(6):065201. doi: 10.1088/1361-6501/aab07d
|
[77] |
SAREDI E,SCIACCHITANO A,SCARANO F. Multi-Δt 3D-PTV based on Reynolds decomposition[J]. Measurement Science and Technology,2020,31(8):084005. doi: 10.1088/1361-6501/ab803d
|
[78] |
KIM D,KIM M,SAREDI E,et al. Robotic PTV study of the flow around automotive side-view mirror models[J]. Experimental Thermal and Fluid Science,2020,119:110202. doi: 10.1016/j.expthermflusci.2020.110202
|
[79] |
MARTÍNEZ GALLAR B,OUDHEUSDEN B W,SCIACCHITANO A,et al. Large-scale volumetric flow visualization of the unsteady wake of a flapping-wing micro air vehicle[J]. Experiments in Fluids,2019,61(1):1-21. doi: 10.1007/s00348-019-2854-7
|
[80] |
PEREIRA F,GHARIB M. Defocusing digital particle image velocimetry and the three-dimensional characteri-zation of two-phase flows[J]. Measurement Science and Technology,2002,13(5):683-694. doi: 10.1088/0957-0233/13/5/305
|
[81] |
PEREIRA F,GHARIB M. A method for three-dimensional particle sizing in two-phase flows[J]. Measurement Science and Technology,2004,15(10):2029-2038. doi: 10.1088/0957-0233/15/10/012
|
[82] |
SHENG J,MALKIEL E,KATZ J. Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer[J]. Experiments in Fluids,2008,45(6):1023-1035. doi: 10.1007/s00348-008-0524-2
|
[83] |
SALAZAR J P L C,DE-JONG J,CAO L J,et al. Experimental and numerical investigation of inertial particle clustering in isotropic turbulence[J]. Journal of Fluid Mechanics,2008,600:245-256. doi: 10.1017/s0022112008000372
|
[84] |
BELDEN J,TRUSCOTT T T,AXIAK M C,et al. Three-dimensional synthetic aperture particle image velocimetry[J]. Measurement Science and Technology,2010,21(12):125403. doi: 10.1088/0957-0233/21/12/125403
|
[85] |
SCARANO F,GHAEMI S,CARIDI G C A,et al. On the use of helium-filled soap bubbles for large-scale tomogra-phic PIV in wind tunnel experiments[J]. Experiments in Fluids,2015,56(2):1-12. doi: 10.1007/s00348-015-1909-7
|
[86] |
LYNCH K P,SCARANO F. Material acceleration estima-tion by four-pulse tomo-PIV[J]. Measurement Science and Technology,2014,25(8):084005. doi: 10.1088/0957-0233/25/8/084005
|
[87] |
SCARANO F,POELMA C. Three-dimensional vorticity patterns of cylinder wakes[J]. Experiments in Fluids,2009,47(1):69-83. doi: 10.1007/s00348-009-0629-2
|
[88] |
SCHRODER A, GEISLLER R, SIEVERLING A, et al. Lagrangian aspects of coherent structures in a turbulent boundary layer flow using TR-Tomo PIV and PTV[C]// Proceedings of 8th International Symposium on Particle Image Velocimetry. 2009.
|
[89] |
SCHRÖDER A,GEISLER R,STAACK K,et al. Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV[J]. Experiments in Fluids,2011,50(4):1071-1091. doi: 10.1007/s00348-010-1014-x
|
[90] |
HUMBLE R, ELSINGA G, SCARANO F, et al. Investigation of the instantaneous 3D flow organization of a SWTBLI using tomographic PIV[C]//Proc of the 37th AIAA Fluid Dynamics Conference and Exhibit. 2007. doi: 10.2514/6.2007-4112
|
[91] |
VIOLATO D,SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids,2011,23(12):124104. doi: 10.1063/1.3665141
|
[92] |
GHAEMI S,SCARANO F. Counter-hairpin vortices in the turbulent wake of a sharp trailing edge[J]. Journal of Fluid Mechanics,2011,689:317-356. doi: 10.1017/jfm.2011.431
|
[93] |
HAIN R,KÄHLER C J,MICHAELIS D. Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate[J]. Experiments in Fluids,2008,45(4):715-724. doi: 10.1007/s00348-008-0553-x
|
[94] |
STAACK K, GEISLER R, SCHRÖDER A, et al. 3D3C-coherent structure measurements in a free turbulent jet[C]//Proc of the 15th International Symposium on Application Laser Techniques to Fluid Mechanics. 2010.
|
[95] |
ORTIZ-DUENAS C, KIM J, LONGMIRE E K. Liquid-liquid drop coalescence using tomographic PIV[C]//Proc of the 8th International Symposium on Particle Image Velocimetry. 2009.
|
[96] |
ATKINSON C,SORIA J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids,2009,47(4-5):553-568. doi: 10.1007/s00348-009-0728-0
|
[97] |
ATKINSON C,COUDERT S,FOUCAUT J M,et al. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer[J]. Experiments in Fluids,2011,50(4):1031-1056. doi: 10.1007/s00348-010-1004-z
|
[98] |
BOUSHAKI T,KOCHED A,MANSOURI Z,et al. Volumetric velocity measurements (V3V) on turbulent swirling flows[J]. Flow Measurement and Instrumentation,2017,54:46-55. doi: 10.1016/j.flowmeasinst.2016.12.003
|
[99] |
LIU Y,CHENG B,BARBERA G,et al. Volumetric visualization of the near- and far-field wake in flapping wings[J]. Bioinspiration & Biomimetics,2013,8(3):036010. doi: 10.1088/1748-3182/8/3/036010
|
[100] |
ZHAO Z,BUCHNER A-J,ATKINSON C,et al. Volumetric measurements of a self-similar adverse pressure gradient turbulent boundary layer using single-camera light-field particle image velocimetry[J]. Experiments in Fluids,2019,60(9):1-14. doi: 10.1007/s00348-019-2788-0
|
[101] |
MEI D,DING J F,SHI S X,et al. High resolution volumetric dual-camera light-field PIV[J]. Experiments in Fluids,2019,60(8):1-21. doi: 10.1007/s00348-019-2781-7
|
[102] |
SCHOBESBERGER J,LICHTNEGER P,HAUER C,et al. Three-dimensional coherent flow structures during inci-pient particle motion[J]. Journal of Hydraulic Engineering,2020,146(5):04020027. doi: 10.1061/(asce)hy.1943-7900.0001717
|
[103] |
VIRANT M,DRACOS T. 3D PTV and its application on Lagrangian motion[J]. Measurement Science and Technology,1997,8(12):1539-1552. doi: 10.1088/0957-0233/8/12/017
|
[104] |
OLIVEIRA J L G,GELD C W M,KUERTEN J G M. Lagrangian and eulerian statistics of pipe flows measured with 3D-PTV at moderate and high Reynolds numbers[J]. Flow, Turbulence and Combustion,2013,91(1):105-137. doi: 10.1007/s10494-013-9457-9
|
[105] |
WU Y,WANG Q,ZHAO C Y. Three-Dimensional droplet splashing dynamics measurement with a stereoscopic sha-dowgraph system[J]. International Journal of Heat and Fluid Flow,2020,83:108576. doi: 10.1016/j.ijheatfluidflow.2020.108576
|
[106] |
KLINNER J,WILLERT C. Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions[J]. Experiments in Fluids,2012,53(2):531-543. doi: 10.1007/s00348-012-1308-2
|
[107] |
HUCK P,MACHICOANE N,VOLK R. A cost-efficient shadow particle tracking velocimetry setup suitable for tracking small objects in a large volume[J]. Procedia IUTAM,2017,20:175-182. doi: 10.1016/j.piutam.2017.03.024
|
[108] |
DABIRI D, PECORA C. Particle tracking velocimetry[M]. Bristol: IOP Publishing, 2019doi: 10.1088/978-0-7503-2203-4ch5
|
[109] |
HUHN F,SCHANZ D,MANOVSKI P,et al. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking[J]. Experiments in Fluids,2018,59(5):1-16. doi: 10.1007/s00348-018-2533-0
|
[110] |
DISCETTI S,COLETTI F. Volumetric velocimetry for fluid flows[J]. Measurement Science and Technology,2018,29(4):042001. doi: 10.1088/1361-6501/aaa571
|
[111] |
SCHANZ D,GESEMANN S,SCHRÖDER A. Shake-The-Box: Lagrangian particle tracking at high particle image densities[J]. Experiments in Fluids,2016,57(5):1-27. doi: 10.1007/s00348-016-2157-1
|
[112] |
OUELLETTE N T,XU H T,BODENSCHATZ E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms[J]. Experiments in Fluids,2006,40(2):301-313. doi: 10.1007/s00348-005-0068-7
|
[113] |
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334. doi: 10.1109/34.888718
|
[114] |
ZHANG Z Y. Motion and structure from two perspective views: from essential parameters to Euclidean motion through the fundamental matrix[J]. Journal of the Optical Society of America A,1997,14(11):2938. doi: 10.1364/josaa.14.002938
|
[115] |
OLIVEIRA J L G,VAN DER GELD C W M,KUERTEN J G M. Concentration and velocity statistics of inertial particles in upward and downward pipe flow[J]. Journal of Fluid Mechanics,2017,822:640-663. doi: 10.1017/jfm.2017.289
|
[116] |
WU Y,WANG Q,ZHAO C Y. A spatial-temporal algorithm for three-dimensional particle tracking veloci-metry using two-view systems[J]. Measurement Science and Technology,2021,32(6):065011. doi: 10.1088/1361-6501/abeb43
|
[117] |
BREVIS W,NIÑO Y,JIRKA G H. Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry[J]. Experiments in Fluids,2011,50(1):135-147. doi: 10.1007/s00348-010-0907-z
|
[118] |
CLARK A,MACHICOANE N,ALISEDA A. A quan-titative study of track initialization of the four-frame best estimate algorithm for three-dimensional Lagrangian particle tracking[J]. Measurement Science and Technology,2019,30(4):045302. doi: 10.1088/1361-6501/ab0786
|
[119] |
DRACOS T. Three-dimensional velocity and vorticity measuring and image analysis techniques[M]. Dordrecht: Springer, 1996. doi: 10.1007/978-94-015-8727-3
|
[120] |
PANDAY S P,OHMI K,NOSE K. An ant colony optimization based stereoscopic particle pairing algorithm for three-dimensional particle tracking velocimetry[J]. Flow Measurement and Instrumentation,2011,22(1):86-95. doi: 10.1016/j.flowmeasinst.2010.12.009
|
[121] |
GESEMANN S. From particle tracks to velocity and acceleration fields using B-splines and penalties[EB/OL]. (2015-11-30)[2021-08-30]. https://arxiv.org/pdf/1510.09034v1.pdf.
|
[122] |
LI Y,PERLMAN E,WAN M P,et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence[J]. Journal of Turbulence,2008,9:N31. doi: 10.1080/14685240802376389
|
[123] |
PERLMAN E, BURNS R, LI Y, et al. Data exploration of turbulence simulations using a database cluster[C]//Proc of the 2007 ACM/IEEE Conference on Supercom-puting. 2007. doi: 10.1145/1362622.1362654
|
[124] |
GUEZENNEC Y G,BRODKEY R S,TRIGUI N,et al. Algorithms for fully automated three-dimensional particle tracking velocimetry[J]. Experiments in Fluids,1994,17(4):209-219. doi: 10.1007/BF00203039
|
[125] |
GIM Y,JANG D K,SOHN D K,et al. Three-dimensional particle tracking velocimetry using shallow neural network for real-time analysis[J]. Experiments in Fluids,2020,61(2):1-8. doi: 10.1007/s00348-019-2861-8
|
[126] |
OHMI K, SAPKOTA A. Particle tracking velocimetry using cellular neural network[C]//The 2006 IEEE Interna-tional Joint Conference on Neural Network Proceedings. 2006: 3963-3969. doi: 10.1109/IJCNN.2006.246917
|
[127] |
PANDAY S P. Stereoscopic correspondence of particles for 3-dimensional particle tracking velocimetry by using genetic algorithm[J]. Journal of the Institute of Engineering,2017,12(1):10-26. doi: 10.3126/jie.v12i1.16706
|
1. |
胡炜,李敬轩,杨立军,张玥,梁炫烨. 不完全角度背景纹影层析测量综述. 火箭推进. 2024(06): 1-26 .
![]() | |
2. |
冯晓鸥,金熠,翟超. 化学发光火焰三维重建研究综述. 实验流体力学. 2023(02): 1-15 .
![]() | |
3. |
李响,雷庆春,徐文江,范玮. 基于计算层析成像的火焰三维重建算法研究. 燃烧科学与技术. 2023(06): 660-666 .
![]() | |
4. |
管今哥,卫娜瑛,郑永秋,陈坤. 基于同步共轴结构的辐射层析测温仪设计. 仪器仪表学报. 2023(09): 239-247 .
![]() | |
5. |
娄春,张鲁栋,蒲旸,张仲侬,李智聪,陈鹏飞. 基于自发辐射分析的被动式燃烧诊断技术研究进展. 实验流体力学. 2021(01): 1-17 .
![]() |