GAO L J,XIN Y N,YUAN Y,et al. Design and construction progress of AVIC Φ1.0 m hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):44-51.. DOI: 10.11729/syltlx20210105
Citation: GAO L J,XIN Y N,YUAN Y,et al. Design and construction progress of AVIC Φ1.0 m hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):44-51.. DOI: 10.11729/syltlx20210105

Design and construction progress of AVIC Φ1.0 m hypersonic wind tunnel

More Information
  • Received Date: August 23, 2021
  • Revised Date: September 29, 2021
  • Accepted Date: October 18, 2021
  • The 1 m hypersonic wind tunnel for the AVIC (FL-64) is the newly built blow down free jet type large-diameter conventional hypersonic wind tunnel in China. It adopts the blowing type operation mode, at the same time, considering the test requirements of low dynamic pressure, a vacuum exhaust system is also equipped. The overall performance, key component design, flow field calibration and preliminary standard model test results of the FL-64 wind tunnel are presented in detail. The performance of the wind tunnel are as follows: the range of Mach number: 4.0 – 8.0; the total pressure range of the settling chamber: 0.1 – 8.0 MPa; the total temperature range of the settling chamber: 300 – 900 K; the unit Reynolds number range: 3.3×106 – 4.6×107 m–1; the effective operating time is not less than 30 s. The FL-64 wind tunnel combined the FL-60 trisonic (Subsonic, Transonic, Supersonic) wind tunnel forming the high and low Mach number range, this can cover the wide-speed range aircraft test with a Mach number of 0.3 – 8.0. Especially the duplication capability of the total enthalpy of Mach number 4.0 can match the real flight conditions. Overall, the successful completion of the FL-64 wind tunnel provide an effective test platform for the development of nation’s high Mach number aircraft.
  • [1]
    GRAY J D, LINDSAY E. Force tests of standard hypervelo-city ballistic models HB-l and HB-2 at Mach 1.5 to 10[R]. AEDC-TDR-64-137, 1964.
    [2]
    VANDERCREEK C, SMITH M, YU K. Focused schlieren and deflectometry at AEDC hypervelocity wind tunnel no.9 [R]. AIAA-2010-4209, 2010. doi: 10.2514/6.2010-4209
    [3]
    KUCHI-ISHI S, WATANABE S, NAGAI S, et al. Compara-tive force/heat flux measurements between JAXA hypersonic test facilities using standard model HB-2(part 1: 1.27 m hyper-sonic wind tunnel results)[R]. JAXA-RR-04-035E, 2005.
    [4]
    许晓斌. 常规高超声速风洞与试验技术[M]. 北京: 国防工业出版社, 2005.
    [5]
    孙勇堂,赵之平,石运军,等. CAAA新建Φ1.2米常规高超声速风洞[C]//中国力学大会−2017暨庆祝中国力学学会成立60周年大会论文集. 2017.
    [6]
    徐翔,程克明,王志坚,等. 南航Φ0.5 m高超声速风洞流场校测[J]. 实验流体力学,2009,23(4):77-81. DOI: 10.3969/j.issn.1672-9897.2009.04.016

    XU X,CHENG K M,WANG Z J,et al. Flow field calibration of NUAA Φ0.5 m hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2009,23(4):77-81. doi: 10.3969/j.issn.1672-9897.2009.04.016
    [7]
    刘中臣,钱战森,冷岩,等. 声爆近场空间压力风洞测量技术[J]. 航空学报,2020,41(4):123596. DOI: 10.7527/S1000-6893.2019.23596

    LIU Z C,QIAN Z S,LENG Y,et al. Wind tunnel measure-ment techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica,2020,41(4):123596. doi: 10.7527/S1000-6893.2019.23596
    [8]
    高亮杰,钱战森,王璐,等. 高马赫数低噪声风洞层流喷管设计与性能评估[J]. 航空科学技术,2016,27(8):68-78.

    GAO L J,QIAN Z S,WANG L,et al. Design and performan-ce evaluation for high Mach number low noise wind tunnel nozzle[J]. Aeronautical Science & Technology,2016,27(8):68-78.
  • Related Articles

    [1]HUANG Ganglei, ZHANG Zhenhui, Li Zhiyuan, TU Guohua, YUAN Xianxu, WU Jie, WANG Xichao, WU Di. Mach 6 freestream calibration of Φ0.6 m low-level-noise experimental platform and measurement of instability waves of sharp cone[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240031
    [2]MA Lichuan, SHI Yunjun, HUANG Bingxiu, SUN Yongtang, YAN Shuo. Vacuum mode debugging and flow field performance calibration of large-scale hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 96-102. DOI: 10.11729/syltlx20210152
    [3]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [4]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [5]Ma Husheng, Liu Huilong, Qin Tianchao, Du Wei, Shi Peijie, Ren Siyuan. Development of hot-wire probe calibration wind tunnel based on compressible fluid[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 93-99. DOI: 10.11729/syltlx20160108
    [6]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
    [7]CHEN De-hua, WANG Rui-bo, LIU Guang-yuan, SHI Jian-yuan, YIN Lu-ping. The test and flow field calibration of 2.4m transonic wind tunnel slotted test section[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 66-70. DOI: 10.3969/j.issn.1672-9897.2013.04.012
    [8]HE Yuan-yuan, NI Hong-li, ZHENG Zhong-hua. Study of aerodynamic performance for integrated hypersonic vehicle's scaled model in the nonuniform flow fields of wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 44-47. DOI: 10.3969/j.issn.1672-9897.2010.04.010
    [9]XU Xiang, CHENG Ke-ming, WANG Zhi-jian, XU Yun. Flow field calibration of NUAA Φ0.5m hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 77-81. DOI: 10.3969/j.issn.1672-9897.2009.04.016
    [10]LI Yan, WANG Hai-wen, GUO Hui. Application of Pitot-tube method in the flow field calibrations of low speed water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 104-107,112. DOI: 10.3969/j.issn.1672-9897.2009.03.022
  • Cited by

    Periodical cited type(5)

    1. 胡喆,张军,倪章松,苏文,许德军,黄丹. 磁浮飞行风洞动模型系统振动特性仿真研究. 振动与冲击. 2025(02): 143-150+198 .
    2. 聂少军,汪运鹏,王春,姜宗林. 激波风洞测力信号的频域数据深度学习建模分析方法. 振动与冲击. 2023(13): 296-302+315 .
    3. 聂少军,汪运鹏. 基于时频变换的激波风洞天平信号分析与处理. 力学学报. 2022(01): 232-243 .
    4. 王南天,王雄,孙鹏,许晓斌,邹琼芬. 连续变迎角试验数据自适应分段拟合滤波方法. 北京航空航天大学学报. 2021(06): 1145-1151 .
    5. 聂少军,王粤,汪运鹏,赵敏,隋婧. 循环神经网络在智能天平研究中的应用. 力学学报. 2021(08): 2336-2344 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (2101) PDF downloads (155) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close