Volume 36 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
WU J Q,YANG D G,ZHANG L,et al. Investigation on artificial intelligence for the prediction of aeroacoustic performances and controlling parameters optimization of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):33-43. doi: 10.11729/syltlx20210073
Citation: WU J Q,YANG D G,ZHANG L,et al. Investigation on artificial intelligence for the prediction of aeroacoustic performances and controlling parameters optimization of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):33-43. doi: 10.11729/syltlx20210073

Investigation on artificial intelligence for the prediction of aeroacoustic performances and controlling parameters optimization of aircraft

doi: 10.11729/syltlx20210073
  • Received Date: 2021-07-19
  • Accepted Date: 2022-01-26
  • Rev Recd Date: 2021-12-28
  • Available Online: 2022-05-07
  • Publish Date: 2022-07-04
  • Accurate aerodynamic characteristic data under different conditions is the prerequisite and fundamental guarantee for the fast design of a flight vehicle, the improvement of a control system, the evaluation of performances and performance appraisal. The cross synthesis between the machine learning technology (ML) based on deep neural network (DNN) and fluid mechanics is developing fast and has achieved remarkable progresses in the modification of turbulence models, modeling of systems, prediction of the aerodynamic and aeroacoustic characteristics, optimization of control parameters and reconstruction of the flow field. To effectively apply the powerful representative capability of DNN, according to the demand of intelligent optimization and design of weapon bays, this paper first established a database of aerodynamic loads for flows past cavities and then built deep forward neural network model for the prediction of aerodynamic loads. To enhance the robustness of the model, random search and Bayesian optimization are introduced during the training of the model. Numerical results show that the trained DNN model is able to predict the aerodynamic loads and aeroacoustic characteristics accurately and efficiently, which provides a useful tool for the prediction and control of the aeroacoustic characteristics of the cavity.
  • loading
  • [1]
    汪清,钱炜祺,丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报,2016,37(8):2331-2347. doi: 10.7527/S1000-6893.2016.0072

    WANG Q,QIAN W Q,DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica,2016,37(8):2331-2347. doi: 10.7527/S1000-6893.2016.0072
    [2]
    蔡金狮. 飞行器系统辨识[M]. 北京: 宇航出版社, 1995.
    [3]
    LIN G F, LAN C, BRANDON J. A generalized dynamic aerodynamic coefficient model for flight dynamics applica-tions[R]. AIAA-97-3643, 1997. doi: 10.2514/6.1997-3643
    [4]
    ALLWINE D, STRAHLER J, LAWRENCE D, et al. Non-linear modeling of unsteady aerodynamics at high angle of attack[R]. AIAA 2004-5275, 2004. doi: 10.2514/6.2004-5275
    [5]
    GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angels of attack[R]. AIAA-92-4651-CP, 1992. doi: 10.2514/6.1992-4651
    [6]
    JEONG S, CHIBA K, OBAYASHI S. Data mining for aero-dynamic design space[R]. AIAA-2005-5079, 2005. doi: 10.2514/6.2005-5079
    [7]
    KUMANO T, JEONG S, OBAYASHI S, et al. Multi-disciplinary design optimization of wing shape for a small jet aircraft using kriging model[R]. AIAA-2006-932, 2006. doi: 10.2514/6.2006-932
    [8]
    CHIBA K,OBAYASHI S. Data mining for multidisciplinary design space of regional-jet wing[J]. Journal of Aerospace Computing,Information,and Communication,2007,4(11):1019-1036. doi: 10.2514/1.19404
    [9]
    LING J L,KURZAWSKI A,TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics,2016,807:155-166. doi: 10.1017/jfm.2016.615
    [10]
    XIAO H,WU J L,WANG J X,et al. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: a data-driven,physics-informed Bayesian approach[J]. Journal of Computational Physics,2016,324:115-136. doi: 10.1016/j.jcp.2016.07.038
    [11]
    WANG Z J, LI J L, LAN C E, et al. Estimation of unsteady aerodynamic models from flight test data[R]. AIAA 2001-4017, 2001. doi: 10.2514/6.2001-4017
    [12]
    WANG Z J, LAN E, BRANDON J. Estimation of lateral-directional unsteady aerodynamic models from flight test data[R]. AIAA 2002-4626, 2002. doi: 10.2514/6.2002-4626
    [13]
    LUI H F S,WOLF W R. Construction of reduced-order models for fluid flows using deep feedforward neural networks[J]. Journal of Fluid Mechanics,2019,872:963-994. doi: 10.1017/jfm.2019.358
    [14]
    ROWLEY C W,WILLIAMS D R. Dynamics and control of high-Reynolds-number flow over open cavities[J]. Annual Review of Fluid Mechanics,2006,38:251-276. doi: 10.1146/annurev.fluid.38.050304.092057
    [15]
    BIAN S Y,DRISCOLL J F,ELBING B R,et al. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity[J]. Experiments in Fluids,2011,51(1):51-63. doi: 10.1007/s00348-010-1025-7
    [16]
    CROOK S D,LAU T C W,KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics,2013,735:587-612. doi: 10.1017/jfm.2013.519
    [17]
    LIU X F,KATZ J. Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field[J]. Journal of Fluid Mechanics,2013,728:417-457. doi: 10.1017/jfm.2013.275
    [18]
    TUERKE F,SCIAMARELLA D,PASTUR L R,et al. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2015,91(1):013005. doi: 10.1103/PhysRevE.91.013005
    [19]
    DIX R E, BAUER R C. Experimental and predicted acoustic amplitudes in a rectangular cavity[R]. AIAA-2000-0472, 2000. doi: 10.2514/6.2000-472
    [20]
    STALLINGS R L, WILCOX F J Jr, et al. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987.
    [21]
    SAROHIA V. Experimental investigation of oscillations in flows over shallow cavities[C]//Proc of the 14th Aerospace Sciences Meeting. 1976. doi: 10.2514/6.1976-182
    [22]
    TAM C K W,BLOCK P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics,1978,89(2):373-399. doi: 10.1017/s0022112078002657
    [23]
    杨党国,李建强,罗新福,等. 弹穴流动特性高速风洞试验研究[J]. 实验流体力学,2006,20(4):33-39. doi: 10.3969/j.issn.1672-9897.2006.04.006

    YANG D G,LI J Q,LUO X F,et al. Investigation on flowing characteristics of the internal weapon cavity in wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2006,20(4):33-39. doi: 10.3969/j.issn.1672-9897.2006.04.006
    [24]
    杨党国,范召林,李建强,等. 弹舱流动特性数值模拟及风洞试验研究[J]. 空气动力学学报,2009,27(3):378-383. doi: 10.3969/j.issn.0258-1825.2009.03.021

    YANG D G,FAN Z L,LI J Q,et al. Studies on flow characteristics of cavity by numerical simulation and wind tunnel test[J]. Acta Aerodynamica Sinica,2009,27(3):378-383. doi: 10.3969/j.issn.0258-1825.2009.03.021
    [25]
    杨党国. 内埋式武器弹舱流动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2006.
    [26]
    杨党国,吴继飞,罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报,2011,32(6):1007-1014. doi: 11-1929/V.20110324.1201.007

    YANG D G,WU J F,LUO X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astronautica Sinica,2011,32(6):1007-1014. doi: 11-1929/V.20110324.1201.007
    [27]
    杨党国,范召林,李建强,等. 后壁倒角对空腔噪声的抑制效果[J]. 实验流体力学,2010,24(5):22-25. doi: 10.3969/j.issn.1672-9897.2010.05.005

    YANG D G,FAN Z L,LI J Q,et al. Suppression effect of rear-face angle of cavity on aerodynamic noise[J]. Journal of Experiments in Fluid Mechanics,2010,24(5):22-25. doi: 10.3969/j.issn.1672-9897.2010.05.005
    [28]
    周方奇,杨党国,王显圣,等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报,2018,39(4):128-138. doi: 10.7527/S1000-6893.2017.21812

    ZHOU F Q,YANG D G,WANG X S,et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica,2018,39(4):128-138. doi: 10.7527/S1000-6893.2017.21812
    [29]
    刘俊,杨党国,王显圣,等. 基于URANS与DDES方法的空腔近场噪声数值研究[J]. 振动与冲击,2016,35(20):154-159. doi: 10.13465/j.cnki.jvs.2016.20.025

    LIU J,YANG D G,WANG X S,et al. Numerical simulation of near-field cavity noise by URANS and DDES[J]. Journal of Vibration and Shock,2016,35(20):154-159. doi: 10.13465/j.cnki.jvs.2016.20.025
    [30]
    刘俊,杨党国,王显圣,等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报,2016,37(2):475-483. doi: 10.7527/S1000-6893.2015.0112

    LIU J,YANG D G,WANG X S,et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2):475-483. doi: 10.7527/S1000-6893.2015.0112
    [31]
    TENNEY A S, GLAUSER M N, LEWALLE J, et al. A deep learning approach to jet noise prediction[R]. AIAA 2018-1736, 2018. doi: 10.2514/6.2018-1736
    [32]
    VLACHAS P R,BYEON W,WAN Z Y,et al. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,2018,474(2213):20170844. doi: 10.1098/rspa.2017.0844
    [33]
    PAWAR S,RAHMAN S M,VADDIREDDY H,et al. A deep learning enabler for nonintrusive reduced order model-ing of fluid flows[J]. Physics of Fluids,2019,31(8):085101. doi: 10.1063/1.5113494
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(8)

    Article Metrics

    Article views (1709) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return