Citation: | WU J Q,YANG D G,ZHANG L,et al. Investigation on artificial intelligence for the prediction of aeroacoustic performances and controlling parameters optimization of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):33-43.. DOI: 10.11729/syltlx20210073 |
[1] |
汪清,钱炜祺,丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报,2016,37(8):2331-2347. DOI: 10.7527/S1000-6893.2016.0072
WANG Q,QIAN W Q,DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica,2016,37(8):2331-2347. doi: 10.7527/S1000-6893.2016.0072
|
[2] |
蔡金狮. 飞行器系统辨识[M]. 北京: 宇航出版社, 1995.
|
[3] |
LIN G F, LAN C, BRANDON J. A generalized dynamic aerodynamic coefficient model for flight dynamics applica-tions[R]. AIAA-97-3643, 1997. doi: 10.2514/6.1997-3643
|
[4] |
ALLWINE D, STRAHLER J, LAWRENCE D, et al. Non-linear modeling of unsteady aerodynamics at high angle of attack[R]. AIAA 2004-5275, 2004. doi: 10.2514/6.2004-5275
|
[5] |
GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angels of attack[R]. AIAA-92-4651-CP, 1992. doi: 10.2514/6.1992-4651
|
[6] |
JEONG S, CHIBA K, OBAYASHI S. Data mining for aero-dynamic design space[R]. AIAA-2005-5079, 2005. doi: 10.2514/6.2005-5079
|
[7] |
KUMANO T, JEONG S, OBAYASHI S, et al. Multi-disciplinary design optimization of wing shape for a small jet aircraft using kriging model[R]. AIAA-2006-932, 2006. doi: 10.2514/6.2006-932
|
[8] |
CHIBA K,OBAYASHI S. Data mining for multidisciplinary design space of regional-jet wing[J]. Journal of Aerospace Computing,Information,and Communication,2007,4(11):1019-1036. doi: 10.2514/1.19404
|
[9] |
LING J L,KURZAWSKI A,TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics,2016,807:155-166. doi: 10.1017/jfm.2016.615
|
[10] |
XIAO H,WU J L,WANG J X,et al. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: a data-driven,physics-informed Bayesian approach[J]. Journal of Computational Physics,2016,324:115-136. doi: 10.1016/j.jcp.2016.07.038
|
[11] |
WANG Z J, LI J L, LAN C E, et al. Estimation of unsteady aerodynamic models from flight test data[R]. AIAA 2001-4017, 2001. doi: 10.2514/6.2001-4017
|
[12] |
WANG Z J, LAN E, BRANDON J. Estimation of lateral-directional unsteady aerodynamic models from flight test data[R]. AIAA 2002-4626, 2002. doi: 10.2514/6.2002-4626
|
[13] |
LUI H F S,WOLF W R. Construction of reduced-order models for fluid flows using deep feedforward neural networks[J]. Journal of Fluid Mechanics,2019,872:963-994. doi: 10.1017/jfm.2019.358
|
[14] |
ROWLEY C W,WILLIAMS D R. Dynamics and control of high-Reynolds-number flow over open cavities[J]. Annual Review of Fluid Mechanics,2006,38:251-276. doi: 10.1146/annurev.fluid.38.050304.092057
|
[15] |
BIAN S Y,DRISCOLL J F,ELBING B R,et al. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity[J]. Experiments in Fluids,2011,51(1):51-63. doi: 10.1007/s00348-010-1025-7
|
[16] |
CROOK S D,LAU T C W,KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics,2013,735:587-612. doi: 10.1017/jfm.2013.519
|
[17] |
LIU X F,KATZ J. Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field[J]. Journal of Fluid Mechanics,2013,728:417-457. doi: 10.1017/jfm.2013.275
|
[18] |
TUERKE F,SCIAMARELLA D,PASTUR L R,et al. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2015,91(1):013005. doi: 10.1103/PhysRevE.91.013005
|
[19] |
DIX R E, BAUER R C. Experimental and predicted acoustic amplitudes in a rectangular cavity[R]. AIAA-2000-0472, 2000. doi: 10.2514/6.2000-472
|
[20] |
STALLINGS R L, WILCOX F J Jr, et al. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987.
|
[21] |
SAROHIA V. Experimental investigation of oscillations in flows over shallow cavities[C]//Proc of the 14th Aerospace Sciences Meeting. 1976. doi: 10.2514/6.1976-182
|
[22] |
TAM C K W,BLOCK P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics,1978,89(2):373-399. doi: 10.1017/s0022112078002657
|
[23] |
杨党国,李建强,罗新福,等. 弹穴流动特性高速风洞试验研究[J]. 实验流体力学,2006,20(4):33-39. DOI: 10.3969/j.issn.1672-9897.2006.04.006
YANG D G,LI J Q,LUO X F,et al. Investigation on flowing characteristics of the internal weapon cavity in wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2006,20(4):33-39. doi: 10.3969/j.issn.1672-9897.2006.04.006
|
[24] |
杨党国,范召林,李建强,等. 弹舱流动特性数值模拟及风洞试验研究[J]. 空气动力学学报,2009,27(3):378-383. DOI: 10.3969/j.issn.0258-1825.2009.03.021
YANG D G,FAN Z L,LI J Q,et al. Studies on flow characteristics of cavity by numerical simulation and wind tunnel test[J]. Acta Aerodynamica Sinica,2009,27(3):378-383. doi: 10.3969/j.issn.0258-1825.2009.03.021
|
[25] |
杨党国. 内埋式武器弹舱流动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2006.
|
[26] |
杨党国,吴继飞,罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报,2011,32(6):1007-1014. DOI: 11-1929/V.20110324.1201.007
YANG D G,WU J F,LUO X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astronautica Sinica,2011,32(6):1007-1014. doi: 11-1929/V.20110324.1201.007
|
[27] |
杨党国,范召林,李建强,等. 后壁倒角对空腔噪声的抑制效果[J]. 实验流体力学,2010,24(5):22-25. DOI: 10.3969/j.issn.1672-9897.2010.05.005
YANG D G,FAN Z L,LI J Q,et al. Suppression effect of rear-face angle of cavity on aerodynamic noise[J]. Journal of Experiments in Fluid Mechanics,2010,24(5):22-25. doi: 10.3969/j.issn.1672-9897.2010.05.005
|
[28] |
周方奇,杨党国,王显圣,等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报,2018,39(4):128-138. DOI: 10.7527/S1000-6893.2017.21812
ZHOU F Q,YANG D G,WANG X S,et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica,2018,39(4):128-138. doi: 10.7527/S1000-6893.2017.21812
|
[29] |
刘俊,杨党国,王显圣,等. 基于URANS与DDES方法的空腔近场噪声数值研究[J]. 振动与冲击,2016,35(20):154-159. DOI: 10.13465/j.cnki.jvs.2016.20.025
LIU J,YANG D G,WANG X S,et al. Numerical simulation of near-field cavity noise by URANS and DDES[J]. Journal of Vibration and Shock,2016,35(20):154-159. doi: 10.13465/j.cnki.jvs.2016.20.025
|
[30] |
刘俊,杨党国,王显圣,等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报,2016,37(2):475-483. DOI: 10.7527/S1000-6893.2015.0112
LIU J,YANG D G,WANG X S,et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2):475-483. doi: 10.7527/S1000-6893.2015.0112
|
[31] |
TENNEY A S, GLAUSER M N, LEWALLE J, et al. A deep learning approach to jet noise prediction[R]. AIAA 2018-1736, 2018. doi: 10.2514/6.2018-1736
|
[32] |
VLACHAS P R,BYEON W,WAN Z Y,et al. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,2018,474(2213):20170844. doi: 10.1098/rspa.2017.0844
|
[33] |
PAWAR S,RAHMAN S M,VADDIREDDY H,et al. A deep learning enabler for nonintrusive reduced order model-ing of fluid flows[J]. Physics of Fluids,2019,31(8):085101. doi: 10.1063/1.5113494
|