LEI J L,LI J W,LIU Y,et al. Experimental study on spreading and breaking mechanism of droplet impinging on low temperature wall at high speed[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):96-101.. DOI: 10.11729/syltlx20210066
Citation: LEI J L,LI J W,LIU Y,et al. Experimental study on spreading and breaking mechanism of droplet impinging on low temperature wall at high speed[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):96-101.. DOI: 10.11729/syltlx20210066

Experimental study on spreading and breaking mechanism of droplet impinging on low temperature wall at high speed

More Information
  • Received Date: June 28, 2021
  • Revised Date: August 17, 2021
  • Accepted Date: August 26, 2021
  • Available Online: September 02, 2021
  • In order to study the dynamic behavior of a droplet impinging on a low-temperature wall, a visualization test was carried out on a single droplet impinging on the normal temperature (22 ℃) and low temperature wall (−30 – −10 ℃) with the Weber number between 533 and 1630 by the high speed shadowing method. The experimental results show that prompt splash and corona splash occurs when the droplet impinges on the low temperature wall at the certain speed, and the splashing of secondary droplet is obvious. However, when the droplet impinges on the normal temperature wall at the same speed, there is no droplet breakage phenomenon. With the decrease of the wall temperature, the Weber number required for the droplets to smash into the wall decreases. When the wall temperature is −30 ℃, the critical Weber number of the droplet crashing into the aluminum plate decreases to about 480. When We < 480, even if the wall temperature is lower than −30 ℃, the droplets would not smash into the wall. When the droplet hits the normal temperature wall, the droplet spreads out rapidly, and the larger the Weber number is, the greater the spread and retraction speed of the droplet is, and the larger the spreading factor of the droplet is. This study provides a reference for the establishment of the impingement model of the droplet impinging on the low temperature wall surface.
  • [1]
    苑吉河,蒋兴良,易辉,等. 输电线路导线覆冰的国内外研究现状[J]. 高电压技术,2004,30(1):6-9. DOI: 10.3969/j.issn.1003-6520.2004.01.003

    YUAN J H,JIANG X L,YI H,et al. The present study on conductor icing of transmission lines[J]. High Voltage Engi-neering,2004,30(1):6-9. doi: 10.3969/j.issn.1003-6520.2004.01.003
    [2]
    隋冬雨,金哲岩,杨志刚. 冷表面上水滴结冰问题的实验研究进展[J]. 制冷学报,2015,36(2):14-20, 40. DOI: 10.3969/j.issn.0253-4339.2015.02.003

    SUI D Y,JIN Z Y,YANG Z G. Experimental progress of water droplet freezing on cold surface[J]. Journal of Refri-geration,2015,36(2):14-20, 40. doi: 10.3969/j.issn.0253-4339.2015.02.003
    [3]
    DALILI N,EDRISY A,CARRIVEAU R. A review of surface engineering issues critical to wind turbine perfor-mance[J]. Renewable and Sustainable Energy Reviews,2009,13(2):428-438. doi: 10.1016/j.rser.2007.11.009
    [4]
    BRAGG M B,BROEREN A P,BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences,2005,41(5):323-362. doi: 10.1016/j.paerosci.2005.07.001
    [5]
    CALAY R K,HOLDØ A E,MAYMAN P,et al. Experi-mental simulation of runback ice[J]. Journal of Aircraft,1997,34(2):206-212. doi: 10.2514/2.2173
    [6]
    PANÃO M R O,MOREIRA A L N. Flow characteristics of spray impingement in PFI injection systems[J]. Experiments in Fluids,2005,39(2):364-374. doi: 10.1007/s00348-005-0996-2
    [7]
    HORIE K, TAKAHASI H, AKAZAKI S. Emissions reduction during warm-up period by incorporating a wall-wetting fuel model on the fuel injection strategy during engine starting[C]//Proc of the SAE Technical Paper Series. 1995. doi: 10.4271/952478
    [8]
    毕菲菲,郭亚丽,沈胜强,等. 液滴撞击固体表面铺展特性的实验研究[J]. 物理学报,2012,61(18):293-298.

    BI F F,GUO Y L,SHEN S Q,et al. Experimental study of spread characteristics of droplet impacting solid surface[J]. Acta Physica Sinica,2012,61(18):293-298.
    [9]
    KHEDIR K R,KANNARPADY G K,ISHIHARA H,et al. Temperature-dependent bouncing of super-cooled water on teflon-coated superhydrophobic tungsten nanorods[J]. App-lied Surface Science,2013,279:76-84. doi: 10.1016/j.apsusc.2013.04.038
    [10]
    MAITRA T,ANTONINI C,TIWARI M K,et al. Super-cooled water drops impacting superhydrophobic textures[J]. Langmuir,2014,30(36):10855-10861. doi: 10.1021/la502675a
    [11]
    孙志成,徐静,吴天宇,等. 液滴撞击冷铝表面的冻结沉积特性[J]. 工程热物理学报,2018,39(8):1780-1785.

    SUN Z C,XU J,WU T Y,et al. Freezing mechanism of water droplet impinging on cold aluminum surface[J]. Journal of Engineering Thermophysics,2018,39(8):1780-1785.
    [12]
    YANG G M,GUO K H,LI N. Freezing mechanism of supercooled water droplet impinging on metal surfaces[J]. International Journal of Refrigeration,2011,34(8):2007-2017. doi: 10.1016/j.ijrefrig.2011.07.001
    [13]
    杨宝海,王宏,朱恂,等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报,2012,63(10):3027-3033. DOI: 10.3969/j.issn.0438-1157.2012.10.003

    YANG B H,WANG H,ZHU X,et al. Effect of velocity on behavior of droplet impacting superhydrophobic surface[J]. CIESC Journal,2012,63(10):3027-3033. doi: 10.3969/j.issn.0438-1157.2012.10.003
    [14]
    李栋,王鑫,高尚文,等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报,2017,68(6):2473-2482. DOI: 10.11949/j.issn.0438-1157.10161518

    LI D,WANG X,GAO S W,et al. Rebounding and splashing behavior of single water droplet impacting on cold super-hydrophobic surface[J]. CIESC Journal,2017,68(6):2473-2482. doi: 10.11949/j.issn.0438-1157.10161518
    [15]
    裴毅强,朱庆洋,彭志军,等. 单液滴撞击不同黏度液膜特性研究[J]. 天津大学学报(自然科学与工程技术版),2019,52(9):949-958. DOI: 10.11784/tdxbz201809053

    PEI Y Q,ZHU Q Y,PENG Z J,et al. Characteristics of single droplet impact on liquid film with different viscosity[J]. Journal of Tianjin University(Science and Technology),2019,52(9):949-958. doi: 10.11784/tdxbz201809053
    [16]
    范瑶,王宏,朱恂,等. 壁面曲率及过冷度对液滴铺展特性的影响[J]. 化工学报,2016,67(7):2709-2717.

    FAN Y,WANG H,ZHU X,et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading[J]. CIESC Journal,2016,67(7):2709-2717.
    [17]
    CHEN L Q,XIAO Z Y,CHAN P C H,et al. A comparative study of droplet impact dynamics on a dual-scaled super-hydrophobic surface and lotus leaf[J]. Applied Surface Science,2011,257(21):8857-8863. doi: 10.1016/j.apsusc.2011.04.094
    [18]
    马强,吴晓敏,陈永根. 水平表面结霜过程的实验研究[J]. 化工学报,2015,66(S1):95-99. DOI: 10.11949/j.issn.0438-1157.20150324

    MA Q,WU X M,CHEN Y G. Experimental study of frosting on horizontal plate[J]. CIESC Journal,2015,66(S1):95-99. doi: 10.11949/j.issn.0438-1157.20150324
    [19]
    LV C,HAO P F,ZHANG X W,et al. Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness[J]. Applied Physics Letters,2016,108(14):141602. doi: 10.1063/1.4945662
    [20]
    李维仲,朱卫英,权生林,等. 液滴撞击水平固体表面的可视化实验研究[J]. 热科学与技术,2008,7(2):155-160. DOI: 10.13738/j.issn.1671-8097.2008.02.004

    LI W Z,ZHU W Y,QUAN S L,et al. Visual experimental study on droplet impacted onto horizontal solid surface[J]. Journal of Thermal Science and Technology,2008,7(2):155-160. doi: 10.13738/j.issn.1671-8097.2008.02.004
    [21]
    LEE J B,DEROME D,GUYER R,et al. Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces[J]. Langmuir,2016,32(5):1299-1308. doi: 10.1021/acs.langmuir.5b04557
    [22]
    MAO T,KUHN D C S,TRAN H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal,1997,43(9):2169-2179. doi: 10.1002/aic.690430903
    [23]
    XU Q,LI Z Y,WANG J,et al. Characteristics of single droplet impact on cold plate surfaces[J]. Drying Techno-logy,2012,30(15):1756-1762. doi: 10.1080/07373937.2012.708001
    [24]
    MARENGO M,ANTONINI C,ROISMAN I V,et al. Drop collisions with simple and complex surfaces[J]. Current Opinion in Colloid & Interface Science,2011,16(4):292-302. doi: 10.1016/j.cocis.2011.06.009
    [25]
    张瑜,宁智,吕明,等. 液滴撞击高温壁面的运动特性[J]. 燃烧科学与技术,2017,23(5):451-457. DOI: 10.11715/rskxjs.R2016090003

    ZHANG Y,NING Z,LÜ M,et al. Dynamics of droplet impacting onto heated surface[J]. Journal of Combustion Science and Technology,2017,23(5):451-457. doi: 10.11715/rskxjs.R2016090003
  • Related Articles

    [1]XIA Huihui, ZHANG Shunping, YANG Shunhua, KAN Ruifeng, XU Zhenyu, RUAN Jun, YAO Lu, HUANG An. Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 80-86. DOI: 10.11729/syltlx20220103
    [2]LIANG Xiaoyi, DING Junfei, ZHANG Yong, LIU Yiqun, TIAN Haiping. Three-dimensional particle reconstruction method for trichromatic mask PIV based on convolutional neural networks[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240045
    [3]YUAN Xun, YU Xin, PENG Jiangbo, QIN Fei, LIU Bing, CAO Zhen, GAO Long, HAN Minghong. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 30-36. DOI: 10.11729/syltlx20210150
    [4]JIANG Hao, WANG Bofu, CHONG Kai Leong, LU Zhiming. Reconstruction of turbulent fields based on super-resolution reconstruction method[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 102-109. DOI: 10.11729/syltlx20210185
    [5]ZHU Haijun, WANG Qian, MEI Xiaohan, WU Yu, ZHAO Changying. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 49-73. DOI: 10.11729/syltlx20210110
    [6]SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. DOI: 10.11729/syltlx20190135
    [7]Wang Jinhua, Nie Yaohui, Chang Min, Zhang Meng, Huang Zuohua. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147
    [8]Huang Zhenli, Zhou Weihu, Qu Zhaosong. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 1-14. DOI: 10.11729/syltlx20160173
    [9]HUANG Hui-ming, LIU Xiang-yong, MA Jun, SONG Jin. The improvement method in 3-D measurement of airplane free-spin[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 77-81. DOI: 10.3969/j.issn.1672-9897.2013.02.015
    [10]CHEN Zhao, GUO Yong-cai, GAO Chao. Principle and technology of three-dimensional PIV[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 77-82,105. DOI: 10.3969/j.issn.1672-9897.2006.04.015
  • Cited by

    Periodical cited type(2)

    1. 幸文婷,朱赤,叶晓明,吴杰俊. 基于自制设备的能源与动力工程测试技术实验课程设计. 实验科学与技术. 2023(04): 105-110 .
    2. 李涛,吴颖,余妍熹. 重力加速度对活塞式压力计准确性的影响. 海峡科技与产业. 2018(01): 61-62 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (748) PDF downloads (82) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close