Citation: | CHEN S Y,DING T,KONG R Z,et al. Heat flux measurement of small scale gap corner at high Mach numbers[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):89-96.. DOI: 10.11729/syltlx20210063 |
[1] |
PALMER G, KONTINOS D, SHERMAN B. Surface heating effects of X-33 vehicle TPS panel bowing, steps, and gaps[C]//Proc of the 36th AIAA Aerospace Sciences Meet-ing and Exhibit. 1998. doi: 10.2514/6.1998-865
|
[2] |
DARYABEIGI K, KNUTSON J, CUNNINGTON G. Heat transfer measurement and modeling in rigid high-temperature reusable surface insulation tiles[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-345
|
[3] |
VENKATAPATHY E, FELDMAN J, ELLERBY D, et al. NASA’s advanced TPS materials and technology develop-ment: multi-functional materials and systems for space exploration[R]. ARC-E-DAA-TN39418, 2017.
|
[4] |
WILDER M C, PRABHU D K. Turbulent heat transfer experiments in hypersonic free flight on surfaces represen-tative of woven TPS materials[R]. NASA 20205011354, 2020.
|
[5] |
HOLLIS B R. Boundary-Layer Transition and Surface Heating Measurements on a Hypersonic Inflatable Aerody-namic Decelerator with Simulated Flexible TPS[R]. AIAA 2017-3122, 2017. doi: 10.2514/6.2017-3122
|
[6] |
DUNAVANT J C,THROCKMORTON D A. Aerodynamic heat transfer to RSI tile surfaces and gap intersections[J]. Journal of Spacecraft and Rockets,1974,11(6):437-440. doi: 10.2514/3.62098
|
[7] |
FUJII K, INOUE Y. Aerodynamic heating measurement on ceramic tile region of Hypersonic Flight Experiment (HYFL-EX)[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. doi: 10.2514/6.1998-605
|
[8] |
GARIMELLA S V,SHOLLENBERGER K A,EIBECK P A,et al. Flow and heat transfer in simulated re-entry vehicle tile gaps[J]. Journal of Thermophysics and Heat Transfer,1993,7(4):644-650. doi: 10.2514/3.473
|
[9] |
唐贵明. 狭窄缝隙内的热流分布实验研究[J]. 流体力学实验与测量,2000,14(4):1-6. DOI: 10.3969/i.issn.1672-9897.2000.02.001
TANG G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measure-ments in Fluid Mechanics,2000,14(4):1-6. doi: 10.3969/i.issn.1672-9897.2000.02.001
|
[10] |
秦强,马建军. 陶瓷防热瓦间缝隙气动加热规律研究[J]. 装备环境工程,2013,10(5):42-46,51. DOI: 10.7643/issn.1672-9242.2013.05.009
QIN Q,MA J J. Aerodynamic heating in gaps among ceramic insulating tiles array[J]. Equipment Environmental Engineering,2013,10(5):42-46,51. doi: 10.7643/issn.1672-9242.2013.05.009
|
[11] |
邱波. 高超声速飞行器横向缝隙内部涡旋结构及热环境数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.
QIU B. Numerical investigation for vortexes and aeroyna-dmic heating environment in transverse gaps on hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2015.
|
[12] |
黄国. 高超声速环境下缝隙热环境的数值模拟研究[D]. 北京: 北京交通大学, 2017.
HUANG G. Numerical simulation for heating environment of gap in hypersonic flow[D]. Beijing: Beijing Jiaotong Univer-sity, 2017.
|
[13] |
黄杰,姚卫星,孔斌,等. 防热瓦式防护系统缝隙热控设计规律[J]. 南京航空航天大学学报,2019,51(3):366-373. DOI: 10.16356/j.1005?2615.2019.03.014
HUANG J,YAO W X,KONG B,et al. Thermal control designing rules of gaps for tile thermal protection system[J]. Journal of Nanjing University of Aeronautics & Astronau-tics,2019,51(3):366-373. doi: 10.16356/j.1005?2615.2019.03.014
|
[14] |
靳旭红,黄飞,程晓丽,等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟[J]. 航空动力学报,2019,34(1):201-209. DOI: 10.13224/j.cnki.jasp.2019.01.023
JIN X H,HUANG F,CHENG X L,et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime[J]. Journal of Aerospace Power,2019,34(1):201-209. doi: 10.13224/j.cnki.jasp.2019.01.023
|
[15] |
龚红明,陈景秋,李理,等. 湍流条件下防热瓦缝隙热环境特性实验研究[J]. 实验流体力学,2015,29(2):13-18,25. DOI: 10.11729/syltlx20140093
GONG H M,CHEN J Q,LI L,et al. Experimental investigationon the aerodynamic heating to tile-to-tile gaps in tubulent bouandry layer[J]. Journal of Experiments in Fluid Mechanics,2015,29(2):13-18,25. doi: 10.11729/syltlx20140093
|