LIU S Y,CHEN J Q,YUAN X X,et al. Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6° angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):1-7.. DOI: 10.11729/syltlx20210059
Citation: LIU S Y,CHEN J Q,YUAN X X,et al. Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6° angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):1-7.. DOI: 10.11729/syltlx20210059

Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6° angle of attack

More Information
  • Received Date: June 09, 2021
  • Revised Date: July 04, 2021
  • Available Online: September 02, 2021
  • Transition plays an important role in the aerodynamic and aerothermal design of hypersonic vehicles. Generally, crossflow instability plays the dominant role in inducing transition in the three-dimensional boundary layer. However, in the noisy environment the influence of the second mode of the instability cannot be ignored. In order to obtain a better understanding of the development of crossflow in the hypersonic boundary layer, the measurement of instability waves in the boundary layer of a 7° half-angle sharp cone model with 6° angle of attack was carried out using focused laser differential interferometer (FLDI) and high frequency pressure fluctuation sensor (PCB) in Mach 6 Ludwieg tube tunnel. The experimental results show that the high-frequency unstable waves are detected at different circumferential positions. Through power spectrum and bi-spectrum analysis, the variation of the unstable wave along the generatrix and the nonlinear interaction between the high-frequency unstable wave and the low-frequency signal (20–40 kHz) are obtained.
  • [1]
    MACK L M. Boundary layer stability theory[J]. Jet Propulsion Laboratory,1969.
    [2]
    MACK L M. Boundary-layer linear stability theory[C]//Course on Stability and Transition of Laminar Flow. 1984.
    [3]
    LI F,CHOUDHARI M,CHANG C L,et al. Transition analysis for the ascent phase of HIFiRE-1 flight experiment[J]. Journal of Spacecraft and Rockets,2015,52(5):1283-1293. doi: 10.2514/1.A33258
    [4]
    LEE C B,CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review,2019,6(1):155-170. doi: 10.1093/nsr/nwy052
    [5]
    ZHANG C H,TANG Q,LEE C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica,2013,29(1):48-54. doi: 10.1007/s10409-013-0009-2
    [6]
    陈坚强,袁先旭,涂国华,等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学,2019,49(11):114701. DOI: 10.1360/SSPMA-2019-0071

    CHEN J Q,YUAN X X,TU G H,et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica: Physica, Mechanica & Astronomica,2019,49(11):114701. doi: 10.1360/SSPMA-2019-0071
    [7]
    STETSON K, KIMMEL R. On hypersonic boundary-layer stabi-lity[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-737
    [8]
    BERRIDGE D C. Measurements of second-mode instability waves in hypersonic boundary layers with a high-frequency pressure transdu-cer[D]. West Lafayette: Purdue University, 2010.
    [9]
    EDELMAN J B,SCHNEIDER S P. Secondary instabilities of hypersonic stationary crossflow waves[J]. AIAA Journal,2017,56(1):182-192. doi: 10.2514/1.J056028
    [10]
    CHOUDHARI M M, LI F, PAREDES P, et al. Nonlinear evolution and breakdown of azimuthally compact crossflow vortex pattern over a yawed cone[C]//Proc of the 2018 AIAA Aerospace Sciences Meeting. 2018. doi: 10.2514/6.2018-1823
    [11]
    MOYES A, PAREDES P, KOCIAN T S, et al. Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.2514/6.2016-0848
    [12]
    KOCIAN T S, MOYES A, MULLEN C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry[C]//Proc of the 46th AIAA Fluid Dynamics Conference. 2016. doi: 10.2514/6.2016-3346
    [13]
    LI F,CHOUDHARI M,PAREDES P,et al. High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer[J]. Physical Review Fluids,2016,1(5):053603. doi: 10.1103/physrevfluids.1.053603
    [14]
    CRAIG S A,SARIC W S. Crossflow instability on a yawed cone at Mach 6[J]. Procedia IUTAM,2015,14:15-25. doi: 10.1016/j.piutam.2015.03.019
    [15]
    KOCIAN T S,MOYES A J,REED H L,et al. Hypersonic crossflow instability[J]. Journal of Spacecraft and Rockets,2019,56(2):432-446. doi: 10.2514/1.a34289
    [16]
    WARD C A C. Crossflow instability and transition on a circular cone at angle of attack in a Mach-6 quiet tunnel[D]. West Lafayette: Purdue University, 2014.
    [17]
    WARD C A C, HENDERSON R O, SCHNEIDER S P. Possible secondary instability of stationary crossflow vortices on an inclined cone at Mach 6[C]//Proc of the 45th AIAA Fluid Dynamics Conference. 2015. doi: 10.2514/6.2015-2773
    [18]
    BORG M P,KIMMEL R L,STANFIELD S. Traveling crossflow instability for the HIFiRE-5 elliptic cone[J]. Journal of Spacecraft and Rockets,2015,52(3):664-673. doi: 10.2514/1.A33145
    [19]
    BORG M P, KIMMEL R L. Simultaneous infrared and pressure measurements of crossflow instability modes for HIFiRE-5[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.2514/6.2016-0354
    [20]
    BORG M P, KIMMEL R L. Ground test measurements of boundary-layer instabilities and transition for HIFiRE-5 at flight-relevant attitudes[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017. doi: 10.2514/6.2017-3135
    [21]
    GROOT K J,SERPIERI J,PINNA F,et al. Secondary crossflow instability through global analysis of measured base flows[J]. Journal of Fluid Mechanics,2018,846:605-653. doi: 10.1017/jfm.2018.253
    [22]
    PARZIALE N J,SHEPHERD J E,HORNUNG H G. Differential interferometric measurement of instability in a hypervelocity boun-dary layer[J]. AIAA Journal,2013,51(3):750-754. doi: 10.2514/1.J052013
    [23]
    PARZIALE N J,SHEPHERD J E,HORNUNG H G. Observations of hypervelocity boundary-layer instability[J]. Journal of Fluid Me-chanics,2015,781:87-112. doi: 10.1017/jfm.2015.489
    [24]
    余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学,2019,33(5):70-75. DOI: 10.11729/syltlx20190076

    YU T,ZHANG W,ZHANG Y F,et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):70-75. doi: 10.11729/syltlx20190076
    [25]
    XIONG Y D,YU T,LIN L Q,et al. Nonlinear instability charac-terization of hypersonic laminar boundary layer[J]. AIAA Journal,2020,58(12):5254-5263. doi: 10.2514/1.J059263
    [26]
    YU T,DE XIONG Y,ZHAO J Q,et al. Application of focused laser differential interferometer to hypersonic boundary-layer instability study[J]. Chinese Journal of Aeronautics,2021,34(5):17-26. doi: 10.1016/j.cja.2020.10.019
    [27]
    CRAIG S A,HUMBLE R A,HOFFERTH J W,et al. Nonlinear behaviour of the Mack mode in a hypersonic boundary layer[J]. Journal of Fluid Mechanics,2019,872:74-99. doi: 10.1017/jfm.2019.359
    [28]
    LI F, CHOUDHARI M, CHANG C L, et al. Analysis of instabilities in non-axisymmetric hypersonic boundary layers over cones[C]//Proc of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. doi: 10.2514/6.2010-4643
  • Cited by

    Periodical cited type(1)

    1. 李学良,李创创,苏伟,吴杰. 分布式粗糙元对高超声速边界层不稳定性的影响试验. 航空学报. 2024(02): 90-108 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1374) PDF downloads (112) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close