Volume 36 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
GONG X A,ZHANG X,MA X Y,et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):19-27. doi: 10.11729/syltlx20210041
Citation: GONG X A,ZHANG X,MA X Y,et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):19-27. doi: 10.11729/syltlx20210041

Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis

doi: 10.11729/syltlx20210041
  • Received Date: 2021-05-10
  • Accepted Date: 2021-06-28
  • Rev Recd Date: 2021-06-13
  • Available Online: 2022-01-10
  • Publish Date: 2022-12-30
  • This article reports our recent experimental study of airfoil flow separation control by flexible serrated trailing edge. The experiments were conducted in a straight-type wind tunnel and a hot-wire anemometer was used to measure the velocity profile downstream of the two-dimensional airfoil. Multi-scale coherent structures within the separated shear layers are analyzed both in the time and frequency domains. The results show that the separation bubble thickness decreases by almost 5% of the chord length, the flexible serrated trailing edge vibrates and deforms adaptively and absorbs nearly 20% of the trailing edge shear layer’s energy, perturbation transmits to the leading edge shear layer, and thus the power spectral density decreases significantly in the lower and larger bandwidth to reduce the noise. The coherent structures’ frequency and amplitude also decrease notably, breaking and inhibiting the large vortex package’s transmission obviously in the separation bubble.
  • loading
  • [1]
    罗振兵,夏智勋,邓雄,等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报,2017,35(2):252-264,251. doi: 10.7638/kqdlxxb-2017.0053

    LUO Z B,XIA Z X,DENG X,et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica,2017,35(2):252-264,251. doi: 10.7638/kqdlxxb-2017.0053
    [2]
    贲宝佳. 一种新型吹吸气相结合的方法控制流动分离[J]. 科技创新与应用,2017(2):56.
    [3]
    PASQUALE L,DURANTE D,BROGLIA R. Flow separation prevention around a NACA0012 profile through multivariable feedback controlled plasma actuators[J]. Computers & Fluids,2019,182:85-107. doi: 10.1016/j.compfluid.2019.02.015
    [4]
    ZHOU Y W,HOU L F,HUANG D G. The effects of Mach number on the flow separation control of airfoil with a small plate near the leading edge[J]. Computers & Fluids,2017,156:274-282. doi: 10.1016/j.compfluid.2017.07.014
    [5]
    LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aero-space Sciences,2002,38(4-5):389-420. doi: 10.1016/S0376-0421(02)00010-6
    [6]
    HUANG X. Theoretical model of acoustic scattering from a flat plate with serrations[J]. Journal of Fluid Mechanics,2017,819:228-257. doi: 10.1017/jfm.2017.176
    [7]
    CHONG T P,VATHYLAKIS A. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge[J]. Journal of Sound and Vibration,2015,354:65-90. doi: 10.1016/j.jsv.2015.05.019
    [8]
    ARCE LEÓN C,MERINO-MARTÍNEZ R,RAGNI D,et al. Boundary layer characterization and acoustic measurements of flow-aligned trailing edge serrations[J]. Experiments in Fluids,2016,57(12):1-22. doi: 10.1007/s00348-016-2272-z
    [9]
    乔渭阳,仝帆,陈伟杰,等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报,2018,36(1):98-121. doi: 10.7638/kqdlxxb-2017.0162

    QIAO W Y,TONG F,CHEN W J,et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica,2018,36(1):98-121. doi: 10.7638/kqdlxxb-2017.0162
    [10]
    TURNER J M,KIM J W. Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall[J]. Physics of Fluids,2020,32(6):065103. doi: 10.1063/5.0009664
    [11]
    张攀峰,王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报,2008,34(4):443-446.

    ZHANG P F,WANG J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actua-tor in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics,2008,34(4):443-446.
    [12]
    吴鋆,王晋军,李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学,2013,27(6):32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006

    WU J,WANG J J,LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics,2013,27(6):32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006
    [13]
    黄勇,王万波,黄宗波,等. 等离子体对翼型流动分离控制历程的PIV试验研究[J]. 实验流体力学,2011,25(6):23-27. doi: 10.3969/j.issn.1672-9897.2011.06.005

    HUANG Y,WANG W B,HUANG Z B,et al. PIV measurement on airfoil flow separation control course by plasma actuation[J]. Journal of Experiments in Fluid Mechanics,2011,25(6):23-27. doi: 10.3969/j.issn.1672-9897.2011.06.005
    [14]
    王万波,黄勇,黄宗波,等. 介质阻挡放电等离子体对NACA0015翼型流动控制的PIV实验研究[J]. 实验流体力学,2012,26(2):1-5. doi: 10.3969/j.issn.1672-9897.2012.02.001

    WANG W B,HUANG Y,HUANG Z B,et al. PIV measurement of dielectric barrier discharge plasma flow control on NACA0015 airfoil[J]. Journal of Experiments in Fluid Mechanics,2012,26(2):1-5. doi: 10.3969/j.issn.1672-9897.2012.02.001
    [15]
    BUSHNESS D M,HEFNER J N,ASHR L. Effect of compliant wall motion on turbulent boundary layers[J]. The Physics of Fluids,1977,20(10):31-48. doi: 10.1063/1.861756
    [16]
    李彪辉,范子椰,刘丽霞,等. 柔性旋涡发生器对翼型前缘分离的自适应控制[J]. 气体物理,2020,5(5):56-62.

    LI B H,FAN Z Y,LIU L X,et al. Adaptive control of wing leading edge separation by flexible vortex generator[J]. Physics of Gases,2020,5(5):56-62.
    [17]
    许影博,李晓东. 锯齿型翼型尾缘噪声控制实验研究[J]. 空气动力学学报,2012,30(1):120-124. doi: 10.3969/j.issn.0258-1825.2012.01.021

    XU Y B,LI X D. An experiment study of the serrated trailing edge noise[J]. Acta Aerodynamica Sinica,2012,30(1):120-124. doi: 10.3969/j.issn.0258-1825.2012.01.021
    [18]
    MOREAU S, ROGER M, CHRISTOPHE J. Flow features and self-noise of airfoils near stall or in stall[R]. AIAA 2009-3189, 2009. doi: 10.2514/6.2009-3198
    [19]
    LARATRO A,ARJOMANDI M,CAZZOLATO B,et al. Self-noise of NACA 0012 and NACA 0021 aerofoils at the onset of stall[J]. International Journal of Aeroacoustics,2017,16(3):181-195. doi: 10.1177/1475472x17709929
    [20]
    刘占生,马瑞贤,杨帆,等. 基于流固耦合作用的柔性体流噪声降噪机理研究[J]. 机械工程学报,2016,52(10):176-184. doi: 10.3901/JME.2016.10.176

    LIU Z S,MA R X,YANG F,et al. Study on noise reduction mechanism of flow induced noise for flexible body based on fluid-structure interaction[J]. Journal of Mechanical Engi-neering,2016,52(10):176-184. doi: 10.3901/JME.2016.10.176
    [21]
    姜楠, 田砚, 唐湛棋. 工程中的流动测试技术及应用[M]. 天津: 天津大学出版社, 2018.

    JIANG N, TIAN Y, TANG Z Q. Flow measurement techniques and applications in engineering[M]. Tianjin: Tianjin University Press, 2018.
    [22]
    MATHIS R,HUTCHINS N,MARUSIC I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics,2009,628:311-337. doi: 10.1017/s0022112009006946
    [23]
    JIANG N,LIU W,LIU J H,et al. Phase-averaged waveforms of Reynolds stress in wall turbulence during the burst events of coherent structures[J]. Science in China Series G:Physics,Mechanics and Astronomy,2008,51(7):857-866. doi: 10.1007/s11433-008-0102-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (1249) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return