CHEN Z Y,LIU Y,XU L. Wind tunnel test investigation on buffeting characteristics of horizontal tail of commercial aircraft in low-speed cruise configuration[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):94-99.. DOI: 10.11729/syltlx20210009
Citation: CHEN Z Y,LIU Y,XU L. Wind tunnel test investigation on buffeting characteristics of horizontal tail of commercial aircraft in low-speed cruise configuration[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):94-99.. DOI: 10.11729/syltlx20210009

Wind tunnel test investigation on buffeting characteristics of horizontal tail of commercial aircraft in low-speed cruise configuration

More Information
  • Received Date: February 03, 2021
  • Revised Date: June 20, 2021
  • Accepted Date: June 21, 2021
  • Available Online: December 09, 2021
  • In this paper, a wind tunnel test method is proposed to analyze the buffeting of the horizontal tail. By installing subminiature pulsating pressure sensors on the wing and horizontal tail surface of a commercial aircraft with conventional layout, the time domain and frequency domain data of the pulsating pressure on the wing and horizontal tail surface are measured and analyzed. The test results show the characteristics of fluctuating pressure and surface pressure distribution under the influence of the wing wake and its own flow characteristics on different sections of the horizontal tail. The results show that the structural forced vibration of the horizontal tail is induced by the random fluctuating pressure excitation generated by the strong separated flow of the wing at medium and small angles of attack, and the dominant frequency of the fluctuating pressure on the horizontal tail surface is close to that of the vortex on the main wing. At large angles of attack, the horizontal tail is no longer disturbed by the wake of the main wing, its fluctuating pressure characteristics are related to its own separation characteristics, and the power spectral density of the fluctuating pressure decreases gradually along the spanwise direction of the horizontal tail.
  • [1]
    MABEY D G. Some aspects of aircraft dynamic loads due to flow separation[J]. Progress in Aerospace Sciences,1989,26(2):115-151. doi: 10.1016/0376-0421(89)90006-7
    [2]
    ZAN S J,MAULL D J. Buffet excitation of wings at low speeds[J]. Journal of Aircraft,1992,29(6):1137-1143. doi: 10.2514/3.46296
    [3]
    FLYNN G A,MORRISON J F,MABEY D G. Buffet alleviation on swept and unswept wings at high incidence[J]. Journal of Aircraft,2001,38(2):368-378. doi: 10.2514/2.2771
    [4]
    王巍,杨智春,张新平. 扰流激励下垂尾抖振响应主模态控制风洞试验研究[J]. 振动与冲击,2012,31(16):18-21. DOI: 10.3969/j.issn.1000-3835.2012.16.004

    WANG W,YANG Z C,ZHANG X P. Fin buffeting alleviation in disturbed flow by buffeting principal modal control method[J]. Jour-nal of Vibration and Shock,2012,31(16):18-21. doi: 10.3969/j.issn.1000-3835.2012.16.004
    [5]
    张庆,叶正寅. 一种基于充气气囊的垂尾抖振抑制新方法研究[J]. 工程力学,2014,31(12):234-240. DOI: 10.6052/j.issn.1000-4750.2013.06.0564

    ZHANG Q,YE Z Y. Study on a new method for suppression of vertical tail buffeting using inflatable bumps[J]. Engineering Mecha-nics,2014,31(12):234-240. doi: 10.6052/j.issn.1000-4750.2013.06.0564
    [6]
    韩冰,徐敏,蔡天星,等. 涡破裂诱导的垂尾抖振数值模拟[J]. 航空学报,2012,33(5):788-795.

    HAN B,XU M,CAI T X,et al. Numerical simulation of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et As-tronautica Sinica,2012,33(5):788-795.
    [7]
    ZHANG Q,YE Z Y. Novel method based on inflatable bump for vertical tail buffeting suppression[J]. Journal of Aircraft,2015,52 (1): 367-371. doi: 10.2514/1.c032552
    [8]
    FERMAN M A,HUTTSELL L J,TURNER E W. Experiments with tangential blowing to reduce buffet response on an F-15 model[J]. Journal of Aircraft,2004,41(4):903-910. doi: 10.2514/1.290
    [9]
    SHETA E, ROCK S, HUTTSELL L. Characteristics of vertical tail buffet of F/A-18 aircraft[C]//Proc of the 39th Aerospace Sciences Meeting and Exhibit. 2001. doi: 10.2514/6.2001-710
    [10]
    ZHAO Y H,HU H Y. Active control of vertical tail buffeting by piezoelectric actuators[J]. Journal of Aircraft,2009,46(4):1167-1175. doi: 10.2514/1.39464
    [11]
    HAUCH R M,JACOBS J H,DIMA C,et al. Reduction of vertical tail buffet response using active control[J]. Journal of Aircraft,1996,33(3):617-622. doi: 10.2514/3.46990
    [12]
    ZHANG Q,HUA R H,YE Z Y. Experimental and computational investigation of novel vertical tail buffet suppression method for high sweep delta wing[J]. Science China Technological Sciences,2015,58(1):147-157. doi: 10.1007/s11431-014-5702-2
    [13]
    RICCI S, BERETTA J, FONTE F, et al. Buffet load alleviation on the fin of a high performance training aircraft[C]//Proc of the 58th AIAA/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2017. doi: 10.2514/6.2017-1819.
    [14]
    PETTIT C L,BROWN D L,BANFORD M P,et al. Full-scale wind-tunnel pressure measurements of an F/A-18 tail during buffet[J]. Journal of Aircraft,1996,33(6):1148-1156. doi: 10.2514/3.47069
    [15]
    ELMEKAWY A,KANDIL O A,BAYSAL O. F/A-18 twin-tail buffet modeling using nonlinear eddy viscosity models[J]. Journal of Air-craft,2015,53(4):1106-1112. doi: 10.2514/1.C033482
    [16]
    CANDON M J, LEVINSKI O, ALTAF A, et al. Aircraft transonic buffet load prediction using artificial neural networks[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0763
    [17]
    高杰,张明禄,吕志咏. 双立尾和三角翼之间的气动干扰实验研究[J]. 实验流体力学,2005,19(3):51-57. DOI: 10.3969/j.issn.1672-9897.2005.03.011

    GAO J,ZHANG M L,LU Z Y. Investigation of aerodynamic interference between delta wings and twin fins[J]. Journal of Experi-ments in Fluid Mechanics,2005,19(3):51-57. doi: 10.3969/j.issn.1672-9897.2005.03.011
    [18]
    ZIMMERMAN N, FERMAN M, YURKOVICH R, et al. Prediction of tail buffet loads for design application[C]//Proc of the 30th Struc-tures, Structural Dynamics and Materials Conference. 1989. doi: 10.2514/6.1989-1378
    [19]
    MEYN L A,JAMES K D. Full-scale wind-tunnel studies of F/A-18 tail buffet[J]. Journal of Aircraft,1996,33(3):589-595. doi: 10.2514/3.46986
    [20]
    ANDERSON W D,PATEL S R,BLACK C L. Low speed wind tunnel buffet testing on the F/A-22[J]. Journal of Aircraft,2006,43(4):879-885. doi: 10.2514/1.10247
    [21]
    DANOWSKY B P, SCHULZE P C. Control surface buffet load measurement using aircraft actuators[C]//Proc of the AIAA Atmos-pheric Flight Mechanics Conference. 2016. doi: 10.2514/6.2016-2005
    [22]
    管德. 气动弹性试验[M]. 北京: 北京航空学院出版社, 1986.
    [23]
    ILLI S, FINGSKES C, LUTZ T, et al. Transonic tail buffet simulations for the common research model[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013. doi: 10.2514/6.2013-2510

Catalog

    Article Metrics

    Article views (412) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close