DUAN J T,ZHANG K,XU J,et al. Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):10-18.. DOI: 10.11729/syltlx20200134
Citation: DUAN J T,ZHANG K,XU J,et al. Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):10-18.. DOI: 10.11729/syltlx20200134

Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins

More Information
  • Received Date: November 01, 2020
  • Revised Date: December 09, 2020
  • Available Online: August 24, 2021
  • Circular pin fins are commonly used in the internal cooling channel of the turbine blade. This paper mainly investigated experimentally the flow mechanism driving heat transfer enhancement in a wide channel with staggered circular pin fins. The flow field in the mid-plane of the channel was measured using Particle Image Velocimetry (PIV). Nusselt number distributions on the endwall was obtained by means of Thermochromic Liquid Crystal (TLC) in the same geometry under the same Reynolds number (1.0×104 or 2.0×104). Results indicate that downstream of circular pins the distribution of vrms is similar to that of Nu. However, when the flow is developed, smaller scale fluctuation increases, and the distributions of turbulent kinetic energy (Kt) and Nu are more uniform. The heat transfer enhancement and cross-stream velocity fluctuation are decreased when Re increases. It is concluded that intense lateral velocity fluctuation induced by vortex shedding is the main flow mechanism driving local heat transfer enhancement. Small scale fluctuation makes local heat transfer uniform.
  • [1]
    SPARROW E M,RAMSEY J W,ALTEMANI C A C. Experiments on in-line pin fin arrays and performance comparisons with staggered arrays[J]. Journal of Heat Transfer,1980,102(1):44-50. doi: 10.1115/1.3244247
    [2]
    ROTH R,LENK G,COBRY K,et al. Heat transfer in freestanding microchannels with in-line and staggered pin fin structures with clearance[J]. International Journal of Heat and Mass Transfer,2013,67:1-15. doi: 10.1016/j.ijheatmasstransfer.2013.07.097
    [3]
    XU F Y,PAN Z H,WU H Y. Experimental investigation on the flow transition in different pin-fin arranged microchannels[J]. Microfluid-ics and Nanofluidics,2017,22(1):1-13. doi: 10.1007/s10404-017-2030-4
    [4]
    HUANG S C,WANG C C,LIU Y H. Heat transfer measurement in a rotating cooling channel with staggered and inline pin-fin arrays using liquid crystal and stroboscopy[J]. International Journal of Heat and Mass Transfer,2017,115(Part A):364-376. doi: 10.1016/j.ijheatmasstransfer.2017.07.040
    [5]
    SIW S C, FRADENECK A D, CHYU M K, et al. The effects of different pin-fin arrays on heat transfer and pressure loss in a narrow channel[C]//Proceedings of ASME Turbo Expo 2015: Turbine Tech-nical Conference and Exposition. 2015. doi: 10.1115/GT2015-43855
    [6]
    CHYU M K, SIW S C, MOON H K. Effects of height-to-diameter ratio of pin element on heat transfer from staggered pin-fin arrays[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2009-59814
    [7]
    CHYU M K,HSING Y C,NATARAJAN V. Convective heat transfer of cubic fin arrays in a narrow channel[J]. Journal of Turbomach-inery,1998,120(2):362-367. doi: 10.1115/1.2841414
    [8]
    XU J, YAO J X, SU P F, et al. Heat transfer and pressure loss characteristics of pin-fins with different shapes in a wide channel[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. 2017. doi: 10.1115/GT2017-63761
    [9]
    JIN W, JIA N, WU J M, et al. Numerical study on flow and heat transfer characteristics of pin-fins with different shapes[C]//Proceed-ings of ASME Turbo Expo 2019: Turbomachinery Technical Confe-rence and Exposition. 2019. doi: 10.1115/GT2019-90520
    [10]
    HUNG S C, HUANG S C, LIU Y H. Influences of the non-uniform pin-fin array on heat transfer distribution in a rotating rectangular channel[C]//Proceedings of ASME Turbo Expo 2018: Turbomach-inery Technical Conference and Exposition. 2018. doi: 10.1115/GT2018-76372
    [11]
    许相辉,蒋甲利,牛中国,等. 圆柱尾流场的Tomo-PIV测量[J]. 实验流体力学,2015,29(5):60-64. DOI: 10.11729/syltlx20150022

    XU X H,JIANG J L,NIU Z G,et al. Measurements of cylinder's wake by Tomo-PIV[J]. Journal of Experiments in Fluid Mechanics,2015,29(5):60-64. doi: 10.11729/syltlx20150022
    [12]
    王勇,郝南松,耿子海,等. 基于时间解析PIV的圆柱绕流尾迹特性研究[J]. 实验流体力学,2018,32(1):64-70. DOI: 10.11729/syltlx20170099

    WANG Y,HAO N S,GENG Z H,et al. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics,2018,32(1):64-70. doi: 10.11729/syltlx20170099
    [13]
    MARAKKOS K,TURNER J T. Vortex generation in the cross-flow around a cylinder attached to an end-wall[J]. Optics & Laser Techno-logy,2006,38(4-6):277-285. doi: 10.1016/j.optlastec.2005.06.014
    [14]
    KIRKIL G,CONSTANTINESCU G. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder[J]. Physics of Fluids,2015,27(7):075102. doi: 10.1063/1.4923063
    [15]
    KANNAN K, KHOSHLESSAN M, HERRMANN M, et al. Detailed numerical study of flow and vortex dynamics in staggered pin-fin arrays within a channel[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016. doi: 10.1115/GT2016-57968
    [16]
    ARMSTRONG J,WINSTANLEY D. A review of staggered array pin fin heat transfer for turbine cooling applications[J]. Journal of Turbomachinery,1988,110(1):94-103. doi: 10.1115/1.3262173
    [17]
    HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. 2nd ed. Boca Raton: CRC Press, 2012. doi: 10.1201/b13616
    [18]
    UZOL O,CAMCI C. Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin fin arrays[J]. Journal of Heat Transfer,2005,127(5):458-471. doi: 10.1115/1.1860563
    [19]
    WON S Y,MAHMOOD G I,LIGRANI P M. Spatially-resolved heat transfer and flow structure in a rectangular channel with pin fins[J]. International Journal of Heat and Mass Transfer,2004,47(8-9):1731-1743. doi: 10.1016/j.ijheatmasstransfer.2003.10.007
    [20]
    DELIBRA G,HANJALIĆ K,BORELLO D,et al. Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall-treatment[J]. International Journal of Heat and Fluid Flow,2010,31(5):740-753. doi: 10.1016/j.ijheatfluidflow.2010.03.004
    [21]
    OTTO M, HODGES J, GUPTA G, et al. Vortical structures in pin fin arrays for turbine cooling applications[C]//Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposi-tion. 2019. doi: 10.1115/GT2019-90552
    [22]
    HAN J C. Turbine blade cooling studies at Texas A& M University: 1980-2004[J]. Journal of Thermophysics and Heat Transfer,2006,20(2):161-187. doi: 10.2514/1.15403
    [23]
    GOLDSTEIN R J,KARNI J. The effect of a wall boundary layer on local mass transfer from a cylinder in crossflow[J]. Journal of Heat Transfer,1984,106(2):260-267. doi: 10.1115/1.3246667
    [24]
    杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer[M]. Beijing: Higher Education Press, 2006.
  • Cited by

    Periodical cited type(2)

    1. 赖佑奎,马海腾,刘一粟,欧阳华. 基于磁共振测速的复合冷却涡轮叶片流动分析. 航空学报. 2023(14): 141-153 .
    2. 张科,段敬添,雷蒋,王子瑞,冀文涛,武俊梅. 基于MRV的菱形肋柱冷却通道三维全流场分析. 航空动力学报. 2023(12): 2837-2847 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (958) PDF downloads (84) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close