ZHONG Y L,YAN Z T,LI Y,et al. Experimental study on simulation of unsteady downburst outflow in atmospheric boundary layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):58-65.. DOI: 10.11729/syltlx20200131
Citation: ZHONG Y L,YAN Z T,LI Y,et al. Experimental study on simulation of unsteady downburst outflow in atmospheric boundary layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):58-65.. DOI: 10.11729/syltlx20200131

Experimental study on simulation of unsteady downburst outflow in atmospheric boundary layer wind tunnel

More Information
  • Received Date: October 29, 2020
  • Revised Date: December 09, 2020
  • Available Online: November 11, 2021
  • In order to realize large-scale unsteady simulation of the downburst outflow in the atmospheric boundary layer wind tunnel, a set of large-scale test facility for the transient downburst outflow was designed and manufactured based on the plane wall jet method. The vertical profile of the horizontal mean wind velocity of the downburst was obtained by adding the wall jet device, and then the unsteady wind field was formed by using a fast-opening valve. The wind velocity record from the Andrews Air Force Base downburst is employed for verification of the experimental procedure. The results show that the simulation device of downburst based on wall jet can effectively simulate the wind field of downburst outflow. Under steady-state conditions, the test device can form a relatively uniform two-dimensional wall jet flow field, and in the fully developed area, the results are consistent with the vertical mean wind profile of the typical downburst flow. The time-varying mean wind velocity time history which is very close to the actual downburst record can be obtained by using the unsteady wall jet device.
  • [1]
    FUJITA T T. The downburst: microburst and macroburst: report of projects NIMROD and JAWS[R]. University of Chicago: Satellite and Mesometeorology Research Project, Research paper 210, 1985.
    [2]
    ABD-ELAAL ES,MILLS J E,MA X. A review of transmission line systems under downburst wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,179:503-513. doi: 10.1016/j.jweia.2018.07.004
    [3]
    XU Z Y,HANGAN H. Scale, boundary and inlet condition effects on impinging jets[J]. Journal of Wind Engineering and Industrial Aero-dynamics,2008,96(12):2383-2402. doi: 10.1016/j.jweia.2008.04.002
    [4]
    LETCHFORD C W,CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations[J]. Journal of Wind Engineering and Industrial Aerody-namics,2002,90(7):733-753. doi: 10.1016/S0167-6105(02)00163-0
    [5]
    MASON M S. Pulsed jet simulation of thunderstorm downbursts[D]. Lubbock, TX, USA: Texas Tech University.
    [6]
    MASON M S,WOOD G S,FLETCHER D F. Influence of tilt and surface roughness on the outflow wind field of an impinging jet[J]. Wind and Structures,2009,12(3):179-204. doi: 10.12989/was.2009.12.3.179
    [7]
    方智远,汪之松,李正良. 雷暴冲击风作用下高层建筑风压幅值特性研究[J]. 建筑结构学报,2019,40(11):19-26. DOI: 10.14006/j.jzjgxb.2018.0356

    FANG Z Y,WANG Z S,LI Z L. Study on wind pressure amplitude characteristics of high-rise buildings under thunderstorm downburst[J]. Journal of Building Structures,2019,40(11):19-26. doi: 10.14006/j.jzjgxb.2018.0356
    [8]
    严剑锋,黄汉杰,刘鸿. 下击暴流的物理模拟及其在建筑抗风试验研究中的应用[J]. 四川建筑科学研究,2018,44(3):56-61. DOI: 10.19794/j.cnki.1008-1933.2018.03.012

    YAN J F,HUANG H J,LIU H. The physical simulation and applications in buildings wind resistance experimental study of downburst[J]. Sichuan Building Science,2018,44(3):56-61. doi: 10.19794/j.cnki.1008-1933.2018.03.012
    [9]
    JUNAYED C,JUBAYER C,PARVU D,et al. Flow field dynamics of large-scale experimentally produced downburst flows[J]. Journal of Wind Engineering and Industrial Aerodynamics,2019,188:61-79. doi: 10.1016/j.jweia.2019.02.008
    [10]
    LIN W E,SAVORY E. Large-scale quasi-steady modelling of a downburst outflow using a slot jet[J]. Wind and Structures,2006,9(6):419-440. doi: 10.12989/was.2006.9.6.419
    [11]
    LIN W E,ORF L G,SAVORY E,et al. Proposed large-scale modelling of the transient features of a downburst outflow[J]. Wind and Structures,2007,10(4):315-346. doi: 10.12989/was.2007.10.4.315
    [12]
    段旻,谢壮宁,石碧青. 下击暴流风场的大气边界层风洞模拟研究[J]. 建筑结构学报,2012,33(3):126-131. DOI: 10.14006/j.jzjgxb.2012.03.017

    DUAN M,XIE Z N,SHI B Q. Experimental study on simulation of downburst in atmospheric boundary layer wind tunnel[J]. Journal of Building Structures,2012,33(3):126-131. doi: 10.14006/j.jzjgxb.2012.03.017
    [13]
    辛亚兵,刘志文,邵旭东,等. 大跨连续刚构桥下击暴流作用效应试验研究[J]. 中国公路学报,2019,32(10):279-290. DOI: 10.19721/j.cnki.1001-7372.2019.10.027

    XIN Y B,LIU Z W,SHAO X D,et al. Effects of downburst on long-span continuous rigid frame bridges[J]. China Journal of Highway and Transport,2019,32(10):279-290. doi: 10.19721/j.cnki.1001-7372.2019.10.027
    [14]
    HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology,1988,27(8):900-927. doi: 10.1175/1520-0450(1988)027<0900:salcom>2.0.co;2
    [15]
    LAUNDER B E,RODI W. The turbulent wall jet measurements and modeling[J]. Annual Review of Fluid Mechanics,1983,15(1):429-459. doi: 10.1146/annurev.fl.15.010183.002241
    [16]
    ERIKSSON J G,KARLSSON R I,PERSSON J. An experimental study of a two-dimensional plane turbulent wall jet[J]. Experiments in Fluids,1998,25(1):50-60. doi: 10.1007/s003480050207
    [17]
    OSEGUERA R M, BOWLES R L. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow[R]. NASA-TM-100632, 1988.
    [18]
    VICROY D D. Assessment of microburst models for downdraft estimation[J]. Journal of Aircraft,1992,29(6):1043-1048. doi: 10.2514/3.46282
    [19]
    WOOD G S,KWOK K C S,MOTTERAM N A,et al. Physical and numerical modelling of thunderstorm downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(6):535-552. doi: 10.1016/S0167-6105(00)00090-8
    [20]
    ABOUTABIKH M,GHAZAL T,CHEN J X,et al. Designing a blade-system to generate downburst outflows at boundary layer wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodyna-mics,2019,186:169-191. doi: 10.1016/j.jweia.2019.01.005
    [21]
    RONCALLO L,SOLARI G. An evolutionary power spectral density model of thunderstorm outflows consistent with real-scale time-history records[J]. Journal of Wind Engineering and Industrial Aerodynamics,2020,203:104204. doi: 10.1016/j.jweia.2020.104204
    [22]
    SU Y W,HUANG G Q,XU Y L. Derivation of time-varying mean for non-stationary downburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,141:39-48. doi: 10.1016/j.jweia.2015.02.008
    [23]
    KIM J,HANGAN H. Numerical simulations of impinging jets with application to downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(4):279-298. doi: 10.1016/j.jweia.2006.07.002
    [24]
    ABD-ELAAL E S,MILLS J E,MA X. Empirical models for predicting unsteady-state downburst wind speeds[J]. Journal of Wind Engineering and Industrial Aerodynamics,2014,129:49-63. doi: 10.1016/j.jweia.2014.03.011
    [25]
    中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [26]
    钟永力,晏致涛,王灵芝,等. 基于壁面射流的下击暴流非稳态风场大涡模拟[J]. 西南交通大学学报,2018,53(6):1179-1186. DOI: 10.3969/j.issn.0258-2724.2018.06.013

    ZHONG Y L,YAN Z T,WANG L Z,et al. Large eddy simulation of unsteady downburst outflow based on wall jet model[J]. Journal of Southwest Jiaotong University,2018,53(6):1179-1186. doi: 10.3969/j.issn.0258-2724.2018.06.013
  • Related Articles

    [1]YANG Yang, QIAN Fengxue, ZHANG Changfeng, LIU Zhiyong. Research on wind tunnel test technology of sonic boom measurement based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 92-100. DOI: 10.11729/syltlx20210193
    [2]ZHOU Jian, ZHANG Jiang, CHEN Qiang, WEI Wei, LIU Lei, QIAN Dandan. Wind tunnel test technique of continuous varying Mach number for air-breathing vehicle[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 76-85. DOI: 10.11729/syltlx20210189
    [3]ZHANG Ying, LIU Nan. Numerical simulation and experimental test of unsteady flow field for oscillating vanes gust generator in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 83-89. DOI: 10.11729/syltlx20210093
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]GUO Xiangdong, ZHANG Pingtao, ZHANG Ke, GUO Qiling, GUO Long. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51. DOI: 10.11729/syltlx20200118
    [6]MA Wenyong, MA Chengcheng, WANG Caiyu, HAN Xiaole, GAO Fei. Wind tunnel experimental study on the wind load interference effect of solar panel arrays[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 19-25. DOI: 10.11729/syltlx20200127
    [7]BAI Yuedi, TONG Guoqiang, JIANG Yu, LI Yan, FENG Fang, ZHAO Bin. Experimental study on starting characteristics of vertical axis wind turbine with resistance wind-cup structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 38-44, 65. DOI: 10.11729/syltlx20190105
    [8]DONG Jingang, JIN Jialin, LI Guangliang, QIN Yongming, MA Handong. Research on test technology of dynamic force measurement of rotating missile in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 81-86. DOI: 10.11729/syltlx20190119
    [9]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [10]JIA Qing, YANG Zhi-gang, LI Qi-liang. Test research of the flow field inside the test section of the automotive wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 33-37. DOI: 10.3969/j.issn.1672-9897.2011.06.007
  • Cited by

    Periodical cited type(4)

    1. 邵苛苛,宋孟杰,沈俊,蔡标华,甄泽康,石含,张旋,张龙. 极地低温环境结冰预探测方法与防除破冰技术研究进展. 哈尔滨工业大学学报. 2025(02): 1-16 .
    2. 张莹博,单光华,王飞,马海鹏,刘瑞卿,陈辉. 风电机组叶片覆冰预测和防覆冰技术综述. 复合材料科学与工程. 2024(08): 119-128 .
    3. 王昭力,刘小春,文飞,陈光荣,舒禹,李伟. 2 MW风机叶片气热法防除冰的传热试验研究. 可再生能源. 2022(03): 356-361 .
    4. 包明鑫,苗波,朱春玲. 压电陶瓷布局对除冰效果的影响研究. 实验流体力学. 2021(04): 73-82 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (580) PDF downloads (53) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close