Citation: | WANG Jin, ZHOU Ling, JI Lucheng. Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 1-12. DOI: 10.11729/syltlx20200088 |
[1] |
MOLINARI M, DAWES W N. Review of evolution of compressor design process and future perspectives[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(6): 761-771. doi: 10.1243/09544062jmes298
|
[2] |
刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8): 2563-2576. DOI: 10.7527/S1000-6893.2015.0078
LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2563-2576. doi: 10.7527/S1000-6893.2015.0078
|
[3] |
HORLOCK J H, DENTON J D. A review of some early design practice using computational fluid dynamics and a current perspective[J]. Journal of Turbomachinery, 2005, 127(1): 5-13. doi: 10.1115/1.1650379
|
[4] |
桂幸民, 滕金芳, 刘宝杰等. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014.
GUI X M, TENG J F, LIU B J, et al. Compressor aerothermodynamics and its applications in aircraft engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014.
|
[5] |
GALLIMORE S J. Axial flow compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(5): 437-449. doi: 10.1243/0954406991522680
|
[6] |
NASA. 轴流压气机气动设计[M]. 秦鹏, 译. 北京: 国防工业出版社, 1975.
|
[7] |
JOHNSEN I A, BULLOCK R O. Aerodynamic design of axial-flow compressors[R]. NASA SP-36, 1965.
|
[8] |
HOWELL A R, BONHAM R P. Overall and stage characteristics of axial-flow compressors[J]. Proceedings of the Institution of Mechanical Engineers, 1950, 163(1): 235-248. doi: 10.1243/pime_proc_1950_163_026_02
|
[9] |
FINGER H B, DUGAN J F J. Analysis of stage matching and off-design performance of multistage axial-flow compressors[R]. NACA RM E52D07, 1952.
|
[10] |
MEDEIROS A A, BENSER W A, HATCH J E. Analysis of off-design performance of a 16-stage axial-flow compressor with various blade modifications[R]. NACA RM E52L03, 1953.
|
[11] |
GEYE P R, VOIT R P A. Investigation of a high-pressure-ratio eight-stage axial-flow research compressor with two transonic inlet stages. IV-modification of aerodynamic design and prediction of performance[R]. NACA RM E55B28, 1955.
|
[12] |
STANDAHAR M R, GEYE P R. Investigation of a high-pressure-ratio eight-stage axial-flow research compressor with two transonic inlet stages. V-preliminary analysis of over all performance of modified compressor[R]. NACA RM E55A03, 1955.
|
[13] |
CREVELING H F, CARMODY R H. Axial flow compressor computer program for calculating off-design performance(Program IV)[R]. NASA CR-72427, 1968.
|
[14] |
HOWELL A R, CALVERT W J. A new stage stacking technique for axial-flow compressor performance prediction[J]. Journal of Engineering for Power, 1978, 100(4): 698-703. doi: 10.1115/1.3446425
|
[15] |
STEINKE R J. A computer code for predicting multistage axial-flow compressor performance by a meanline stage-stacking method[R]. NASA-TP-2020, 1982.
|
[16] |
VERES J. Axial and centrifugal compressor mean line flow analysis method[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009. doi: 10.2514/6.2009-1641
|
[17] |
JACK T K, ELDER R L. A modified stage-stacking method for multi-stage axial flow compressor calculations[J]. International Journal of Scientific & Engineering Research, 2012, 3(3): 1-7. http://www.mendeley.com/research/modified-stagestacking-method-multi-stage-axial-flow-compressor-calculations-pressure-coefficient/
|
[18] |
DAHLQUIST A N. Investigation of losses prediction methods in 1D for axial gas turbines[D]. Sweden: Lund University, 1990.
|
[19] |
SMITH S L. One-dimensional mean line code technique to calculate stage-by-stage compressor characteristics[D]. Knoxville: University of Tennessee, 1999.
|
[20] |
MADADI A, HAJILOUY BENISI A. Performance predicting modeling of axial-flow compressor at design and off-design conditions[C]//Proc of the Volume 6: Turbomachinery, Parts A, B, and C, Anerucab Sicuett of Mechanical Engineers Digital Collection. 2008. doi: 10.1115/gt2008-50550
|
[21] |
ASLI M, TOUSI A M. Performance prediction of axial flow turbomachines using a modified one dimensional method[J]. International Journal of Scientific & Engineering Research, 2013, 4(7): 1486-1491. http://ijser.org/researchpaper/Performance-Prediction-of-Axial-Flow-Turbomachines-Using-a-Modified-One-Dimensional-Method.pdf
|
[22] |
KIDIKIAN J, REGGIO M. Off-design prediction of transonic axial compressors: part 1-mean-line code and tuning factors[C]//Proc of the Volume 2A: Turbomachinery. American Society of Mechanical Engineers. 2018. doi: 10.1115/gt2018-75124
|
[23] |
KIDIKIAN J, REGGIO M. Off-design prediction of transonic axial compressors: part 2-generalized mean-line loss modelling methodology[C]//Proc of the Volume 2A: Turbomachinery. American Society of Mechanical Engineers. 2018. doi: 10.1115/gt2018-75125
|
[24] |
MILLER A S. Compressor conceptual design optimization[D]. Atlanta: Georgia Institute of Technology, 2015.
|
[25] |
WHITE N M, TOURLIDAKIS A, ELDER R L. Axial compressor performance modelling with a quasi-one-dimensional approach[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 181-193. doi: 10.1243/09576500260049197
|
[26] |
JOHNSON M S. One-dimensional, stage-by-stage, axial compressor performance model[C]//Proc of the Volume 1: Turbomachinery. American Society of Mechanical Engineers. 1991. doi: 10.1115/91-gt-192
|
[27] |
ASLI M, TOUSI A M. Performance analysis of axial flow compressor and part load consideration in a gas turbine application[J]. Journal of Thermal Science and Technology, 2013, 8(3): 476-487. doi: 10.1299/jtst.8.476
|
[28] |
ROZENDAAL A V. A computer program for the coupled implementation of meanline and throughflow methods to simplify the aerodynamic design of multistage axial compressors[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2016.
|
[29] |
李志刚, 陶增元, 丁康乐, 等. 一种改进的变几何压气机特性计算方法[J]. 航空发动机, 2004, 30(4): 7-9. DOI: 10.3969/j.issn.1672-3147.2004.04.003
LI Z G, TAO Z Y, DING K L, et al. Simulation of variable geometry compressor characteristics[J]. Aeroengine, 2004, 30(4): 7-9. doi: 10.3969/j.issn.1672-3147.2004.04.003
|
[30] |
李立君, 黄杰, 唐狄毅, 等. 轴流压气机特性预测[J]. 西北工业大学学报, 2003, 21(1): 71-73. DOI: 10.3969/j.issn.1000-2758.2003.01.018
LI L J, HUANG J, TANG D Y, et al. An accurate method for predicting performance characteristics of multi-stage axial compressor[J]. Journal of Northwestern Polytechnical University, 2003, 21(1): 71-73. doi: 10.3969/j.issn.1000-2758.2003.01.018
|
[31] |
斯夏依, 钟勇健, 滕金芳, 等. 十级高压压气机气动方案设计的优化[J]. 流体机械, 2016, 44(6): 24-28, 16. DOI: 10.3969/j.issn.1005-0329.2016.06.005
SI X Y, ZHONG Y J, TENG J F, et al. Aerodynamic preliminary design optimization of ten-stage high pressure compressor[J]. Fluid Machinery, 2016, 44(6): 24-28, 16. doi: 10.3969/j.issn.1005-0329.2016.06.005
|
[32] |
丁伟. 基于多目标遗传算法的轴流压气机气动优化设计技术研究[D]. 西安: 西北工业大学, 2006.
DING W. Research on aerodynamic optimization design technology of axial flow compressor based on multi-objective genetic algorithm[D]. Xi'an: Northwestern Polytechnical University, 2006.
|
[33] |
CAI Y H, WANG H J, TANG D Y, et al. A new method for predicting performance of axial-flow compressor[C]//Proceedings of ASME 1985 Beijing International Gas Turbine Symposium and Exposition. 2015. doi: 10.1115/85-IGT-23
|
[34] |
崔凝, 王兵树, 马永光, 等. 变几何多级轴流压气机动态仿真模型的研究与应用[J]. 动力工程, 2007, 27(6): 856-862. DOI: 10.3321/j.issn:1000-6761.2007.06.007
CUI N, WANG B S, MA Y G, et al. Study and application of dynamic simulation models for multistage axial-flow compre-ssors with variable geometry[J]. Journal of Power Engineering, 2007, 27(6): 856-862. doi: 10.3321/j.issn:1000-6761.2007.06.007
|
[35] |
陈江, 刘太秋, 李孝堂, 等. 五级轴流压气机气动设计数值研究[J]. 工程热物理学报, 2010, 31(6): 943-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201006013.htm
CHEN J, LIU T Q, LI X T, et al. Aerodynamic design of five stage axial compressor by numerical simulation[J]. Journal of Engineering Thermophysics, 2010, 31(6): 943-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201006013.htm
|
[36] |
黄雄武, 兰发祥, 雷丕霓, 等. 高负荷高效率压气机级特性计算研究[J]. 燃气涡轮试验与研究, 2013, 26(2): 28-32. DOI: 10.3969/j.issn.1672-2620.2013.02.008
HUANG X W, LAN F X, LEI P N, et al. Performance simulation and computation of high loading and high efficiency compressor stage[J]. Gas Turbine Experiment and Research, 2013, 26(2): 28-32. doi: 10.3969/j.issn.1672-2620.2013.02.008
|
[37] |
钟勇健, 滕金芳, 羌晓青, 等. 级间引气对一维方案压气机流道和性能的影响[J]. 节能技术, 2014, 32(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201402005.htm
ZHONG Y J, TENG J F, QIANG X Q, et al. Effects of inter-stage bleed rate on compressor flow path and performance by mean line method[J]. Energy Conservation Technology, 2014, 32(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201402005.htm
|
[38] |
史磊, 刘波, 张鹏, 等. 商用发动机10级高压压气机一维特性优化设计[J]. 航空动力学报, 2013, 28(7): 1564-1569. DOI: 10.13224/j.cnki.jasp.2013.07.031
SHI L, LIU B, ZHANG P, et al. One-dimensional characteristic optimization design for ten-stage high pressure compressor in commercial engine[J]. Journal of Aerospace Power, 2013, 28(7): 1564-1569. doi: 10.13224/j.cnki.jasp.2013.07.031
|
[39] |
张军. 多级轴流压气机方案设计与特性计算研究[D]. 北京: 北京理工大学, 2016.
ZHANG J. Preliminary design and performance calculation for multistage axial flow compressor[D]. Beijing: Beijing Institute of Technology, 2016.
|
[40] |
夏凯. 轴流压气机转角气动特性计算的级叠加方法研究[D]. 北京: 中国舰船研究院, 2019.
XIA K. Stage-stacking method for calculating aerodynamic characteristics of rotating angle of axial compressor[D]. Beijing: China Ship Research and Development Academy, 2019.
|
[41] |
PEYVAN A, HAJILOUY BENISI A, TECHNOLOGY S U O, et al. Axial-flow compressor performance prediction in design and off-design conditions through 1-D and 3-D modeling and experimental study[J]. Journal of Applied Fluid Mecha-nics, 2016, 9(7): 2149-2160. doi: 10.18869/acadpub.jafm.68.236.25222
|
[42] |
WRIGHT P I, MILLER D C. An improved compressor performance prediction model[J]. Proceedings of the Institution of Mechanical Engineers European Conference: Turbomachinery-Latest Developments in a Changing Scene, 1991, 69-82. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071463893.html
|
[43] |
MILLER D C, WASDELL D L. Off-design prediction of compressor blade loss[J]. Proceedings of the Institution of Mechanical Engineers International Conference: Turbomachinery-Efficiency Prediction and Improvement, 1987, 249-260. http://www.researchgate.net/publication/292201970_Off-design_prediction_of_compressor_blade_losses
|
[44] |
DAVIS W R. A computer program for analysis and design of the flow in turbomachinery, Part B-loss and deviation correlations[R]. Carleton University Report ME A70-1, 1970.
|
[45] |
CUMPSTY N A. Compressor Aerodynamics[M]. Essex: Longman Scientific and Technical, 1989.
|
[46] |
彭泽琰, 刘刚, 桂幸民, 等. 航空燃气轮机原理[M]. 北京: 国防工业出版社, 2008.
|
[47] |
ROLAND W, MILLAR D A J. Through flow calculations based on matrix inversion: loss prediction[R]. AGARD-CP-195, 1976.
|
[48] |
AUNGIER R H, FAROKHI S. Axial-flow compressors: a strategy for aerodynamic design and analysis[J]. Applied Mechanics Reviews, 2004, 57(4): B22. doi: 10.1115/1.1786589
|
[49] |
SWAN W C. A practical method of predicting transonic-compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 1961, 83(3): 322-330. http://www.researchgate.net/publication/275376095_A_Practical_Method_of_Predicting_Transonic-Compressor_Performance
|
[50] |
DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656. doi: 10.1115/1.2929299
|
[51] |
LIEBLEIN S, ROUDEBUSH W H. Theoretical loss relations for low-speed two-dimensional-cascade flow[R]. NACA TN 3662, 1956.
|
[52] |
KOCH C C, SMITH L H. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power, 1976, 98(3): 411-424. doi: 10.1115/1.3446202
|
[53] |
JANSEN W, MOFFATT W C. The off-design analysis of axial-flow compressors[J]. Journal of Engineering for Power, 1967, 89(4): 453-462. doi: 10.1115/1.3616712
|
[54] |
MILLER G R, LEWIS G W, HARTMANN M J. Shock losses in transonic compressor blade rows[J]. Journal of Engineering for Power, 1961, 83(3): 235-241. doi: 10.1115/1.3673182
|
[55] |
STORER J A, CUMPSTY N A. Tip leakage flow in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 252-259. doi: 10.1115/1.2929095
|
[56] |
STORER J A, CUMPSTY N A. An approximate analysis and prediction method for tip clearance loss in axial compressors[C]//Proceedings of ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. 2015. doi: 10.1115/93-GT-140
|
[57] |
MELLOR G L, WOOD G M. An axial compressor end-wall boundary layer theory[J]. Journal of Basic Engineering, 1971, 93(2): 300-314. doi: 10.1115/1.3425231
|
[58] |
BALSA T F, MELLOR G L. The simulation of axial compressor performance using an annulus wall boundary layer theory[J]. Journal of Engineering for Power, 1975, 97(3): 305-317. doi: 10.1115/1.3445989
|
[59] |
HIRSCH C. Flow prediction in axial flow compressors including end-wall boundary layers[C]//Proceedings of ASME 1976 In-ternational Gas Turbine and Fluids Engineering Conference. 2015. doi: 10.1115/76-GT-72
|
[60] |
HVBNER J, FOTTNER L. Influence of tip-clearance, aspect ratio, blade loading, and inlet boundary layer on secondary losses in compressor cascades[C]//Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. 2015. doi: 10.1115/96-GT-505
|
[61] |
KOCH C C. Stalling pressure rise capability of axial flow compressor stages[J]. Journal of Engineering for Power, 1981, 103(4): 645-656. doi: 10.1115/1.3230787
|
[62] |
McKENZIE A B. Axial flow fans and compressors: aerodynamic design and performance[M]. Burlington: Ashgate Publishing Company, 1997.
|