Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LOU Chun, ZHANG Ludong, PU Yang, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1-17. doi: 10.11729/syltlx20200063
Citation: LOU Chun, ZHANG Ludong, PU Yang, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1-17. doi: 10.11729/syltlx20200063

Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation

doi: 10.11729/syltlx20200063
  • Received Date: 2020-05-09
  • Rev Recd Date: 2020-07-02
  • Publish Date: 2021-02-25
  • Passive techniques for combustion diagnostics utilize flame spontaneous emission radiation information. The characteristics of this technique are noninvasive, low requirement on measurement environment, compact system, and easy to implement, and therefore it has unique advantages for online measurement of the combustion field. Firstly, the advantages and limitations of various combustion diagnosis technologies have been analyzed. Then, based on the work of passive combustion measurement diagnosis carried out by State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, the principles and state of the art of spontaneous emission radiation diagnostic are introduced according to the three aspects of flame emission spectroscopy, flame image processing, and thermal radiative imaging. Qualitative analysis of the combustion status and quantitative calculation of key combustion information such as the temperature and the species volume fraction in the combustion field can be achieved by using the three techniques above. Finally, the development trend of the spontaneous emission radiation diagnosis technology is presented, which is to obtain more plentiful measured signals, higher measurement resolution and accuracy, and more kinds of measured results.
  • loading
  • [1]
    齐飞. 燃烧: 一个不息的话题: 同步辐射单光子电离技术在燃烧研究中的应用[J]. 物理, 2006, 35(1): 1-6. doi: 10.3521/j.issn:0379-4148.2006.01.001

    QI F. Combustion, a never extinguishing topic: Combustion study with synchrotron radiation single-photon ionization technique[J]. Physics, 2006, 35(1): 1-6. doi: 10.3521/j.issn:0379-4148.2006.01.001
    [2]
    张平. 燃烧诊断学[M]. 北京: 兵器工业出版社, 1988.
    [3]
    KOHSE-HÖINGHAUS K, JEFFRIES J B. Applied combus-tion diagnostics[M]. New York: CRC Press, 2002.
    [4]
    汪亮. 燃烧实验诊断学[M]. 2版. 北京: 国防工业出版社, 2011.
    [5]
    熊姹, 范玮. 应用燃烧诊断学[M]. 西安: 西北工业大学出版社, 2014.
    [6]
    娄春. 工程燃烧诊断学[M]. 北京: 中国电力出版社, 2016.
    [7]
    刘训臣, 李玉阳, 周忠岳, 等. 光谱法和取样分析法在燃烧诊断研究中的应用[J]. 实验流体力学, 2016, 30(1): 43-54, 67. doi: 10.11729/syltlx20150138

    LIU X C, LI Y Y, ZHOU Z Y, et al. Applications of laser spectroscopy and mass spectrometry in combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 43-54, 67. doi: 10.11729/syltlx20150138
    [8]
    李麦亮, 赵永学, 耿辉, 等. 基于光谱测量的燃烧诊断技术[J]. 装备指挥技术学院学报, 2002, 13(4): 32-36. doi: 10.3783/j.issn.1673-0127.2002.4.009

    LI M L, ZHAO Y X, GENG H, et al. Combustion diagnosis technology based on spectroscopy measurements[J]. Journal of the Academy of Equipment Command & Technology, 2002, 13(4): 32-36. doi: 10.3783/j.issn.1673-0127.2002.4.009
    [9]
    蔡小舒, 周骛, 杨荟楠, 等. 燃烧与流场在线测量诊断方法研究进展[J]. 实验流体力学, 2014, 28(1): 12-20. doi: 10.11729/syltlx20130069

    CAI X S, ZHOU W, YANG H N, et al. Research advances in the in-line measurement techniques for combustion and flow field[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1): 12-20. doi: 10.11729/syltlx20130069
    [10]
    刘晶儒, 胡志云. 基于激光的测量技术在燃烧流场诊断中的应用[J]. 中国光学, 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531

    LIU J R, HU Z Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Journal of Optics, 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531
    [11]
    王海青, 林伟, 仝毅恒, 等. 基于激光的燃烧场温度诊断方法综述[J]. 气体物理, 2020, 5(1): 42-55. doi: 10.19527/j.cnki.2096-1642.0752

    WANG H Q, LIN W, TONG Y H, et al. Review of laser-based temperature diagnosis methods for combustion field[J]. Physics of Gases, 2020, 5(1): 42-55. doi: 10.19527/j.cnki.2096-1642.0752
    [12]
    洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43-53, 54. doi: 10.11729/syltlx20160177

    HONG Y J, SONG J L, RAO W, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43-53, 54. doi: 10.11729/syltlx20160177
    [13]
    CAI W W, KAMINSKI C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy and Combustion Science, 2017, 59: 1-31. doi: 10.1016/j.pecs.2016.11.002
    [14]
    宋尔壮, 雷庆春, 范玮. 基于层析原理的湍流火焰三维测量综述[J]. 实验流体力学, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135

    SONG E Z, LEI Q C, FAN W. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135
    [15]
    沈国清. 基于声波理论的炉膛温度场在线监测技术研究[D]. 北京: 华北电力大学, 2007.

    SHEN G Q. The study of on-line measurement technology of furnace temperature field based on acoustic theory[D]. Beijing: North China Electric Power University, 2007. doi: 10.7666/d.y1058352
    [16]
    刘石, 陈琪, 李志宏, 等. 多孔介质中燃烧火焰的ECT成像研究[J]. 工程热物理学报, 2008, 29(12): 2164-2166. doi: 10.3521/j.issn:0253-231X.2008.12.051

    LIU S, CHEN Q, LI Z H, et al. ECT imaging of flames in porous material[J]. Journal of Engineering Thermophysics, 2008, 29(12): 2164-2166. doi: 10.3521/j.issn:0253-231X.2008.12.051
    [17]
    周怀春. 炉内火焰可视化检测原理与技术[M]. 北京: 科学出版社, 2005.
    [18]
    DOCQUIER N, CANDEL S. Combustion control and sensors: a review[J]. Progress in Energy and Combustion Science, 2002, 28(2): 107-150. doi: 10.1016/S0360-1285(01)00009-0
    [19]
    BALLESTER J, GARCÍA-ARMINGOL T. Diagnostic techni-ques for the monitoring and control of practical flames[J]. Progress in Energy and Combustion Science, 2010, 36(4): 375-411. doi: 10.1016/j.pecs.2009.11.005
    [20]
    GAYDON A G. The spectroscopy of flames[M]. 2nd ed. London: Chapman and Hall, 1974.
    [21]
    韩才元. 燃烧测量技术[M]. 武汉: 华中理工大学出版社, 1990.
    [22]
    余登美, 张仲侬, 娄春. 空气及富氧气氛下碳氢扩散火焰热辐射的实验研究[J]. 燃烧科学与技术, 2018, 24(5): 458-462. doi: 10.11715/rskxjs.R201804012

    YU D M, ZHANG Z N, LOU C. Experimental investigation on thermal radiation of hydrocarbon diffusion flame in air and oxygen-enriched atmosphere[J]. Journal of Combustion Science and Technology, 2018, 24(5): 458-462. doi: 10.11715/rskxjs.R201804012
    [23]
    HE Z L, LOU C, FU J T, et al. Experimental investigation on temporal release of potassium from biomass pellet combustion by flame emission spectroscopy[J]. Fuel, 2019, 253: 1378-1384. doi: 10.1016/j.fuel.2019.05.135
    [24]
    HOSSAIN A, NAKAMURA Y. A numerical study on the ability to predict the heat release rate using CH* chemilumine-scence in non-sooting counterflow diffusion flames[J]. Combustion and Flame, 2014, 161(1): 162-172. doi: 10.1016/j.combustflame.2013.08.021
    [25]
    WANG H, YOU X Q, JOSHI A V, et al. High-temperature combustion reaction model of H2/CO/C1-C4 compounds[R/OL].[2020-05-09]. http://ignis.usc.edu/USC_Mech_Ⅱ.htm.
    [26]
    REYNOLDS P M. A review of multicolour pyrometry for temperatures below 1500℃[J]. British Journal of Applied Physics, 1964, 15(5): 579-589. doi: 10.1088/0508-3443/15/5/316
    [27]
    戴景民. 多光谱辐射测温理论与应用[M]. 北京: 高等教育出版社, 2002.

    DAI J M. Theory andpractice of multi-spectral thermometry[M]. Beijing: Higher Education Press, 2002.
    [28]
    程晓舫, 符泰然, 范学良. 谱色测温原理[J]. 中国科学G辑: 物理学力学天文学, 2004, 34(6): 639-647. doi: 10.3969/j.issn.1674-7275.2004.06.005
    [29]
    FU T R, TAN P, PANG C H, et al. Fast fiber-optic multi-wavelength pyrometer[J]. Review of Scientific Instruments, 2011, 82(6): 064902. doi: 10.1063/1.3596567
    [30]
    郑楚光, 柳朝晖. 弥散介质的光学特性及辐射传热[M]. 武汉: 华中理工大学出版社, 1996.

    ZHENG C G, LIU Z H. Optical properties and radiative heat transfer of dispesed particles[M]. Wuhan: Huazhong Univer-sity of Science and Technology (HUST) Press, 1996.
    [31]
    SUN Y P, LOU C, ZHOU H C. A simple judgment method of gray property of flames based on spectral analysis and the two-color method for measurements of temperatures and emissivity[J]. Proceedings of the Combustion Institute, 2011, 35(1): 735-741. doi: 10.1016/j.proci.2010.07.042
    [32]
    MODEST M. Radiative heat transfer[M]. 3rd ed. San Diego: Academic Press, 2013.
    [33]
    陈晓斌, 蔡小舒, 范学良, 等. 原子发射双谱线法测火焰温度的实验研究[J]. 光谱学与光谱分析, 2009, 29(12): 3177-3180. doi: 10.3964/j.issn.1000-0593(2009)12-3177-04

    CHEN X B, CAI X S, FAN X L, et al. Experimental study on flame temperature measurement by double line of atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2009, 29(12): 3177-3180. doi: 10.3964/j.issn.1000-0593(2009)12-3177-04
    [34]
    LOU C, CHEN C, SUN Y P, et al. Review of soot measurement in hydrocarbon-air flames[J]. Science China Technological Sciences, 2010, 53(8): 2129-2141. doi: 10.1007/s11431-010-3212-4
    [35]
    HE X H, LOU C, QIAO Y, et al. In-situ measurement of temperature and alkali metal concentration in municipal solid waste incinerators using flame emission spectroscopy[J]. Waste Management, 2020, 102: 486-491. doi: 10.1016/j.wasman.2019.11.015
    [36]
    TURNS S R. 燃烧学导论: 概念与应用[M]. 姚强, 李水清, 王宇, 译. 2版. 北京: 清华大学出版社, 2009.

    TURNS S R. An introduction to combustion concepts and applications: concepts and applications[M]. 2nd ed. Translated by YAO Q, LI S Q, WANG Y. Beijing: Tsinghua University Press, 2009.
    [37]
    李智聪, 何小煌, 娄春. 乙烯层流反扩散火焰形状的理论计算及实验测量[J]. 燃烧科学与技术, 2020, 26(3): 199-204. doi: 10.11715/rskxjs.R202003006

    LI Z C, HE X H, LOU C. Theoretical calculation and experimental measurement of the shape of ethylene laminar inverse diffusion flame[J]. Journal of Combustion Science and Technology, 2020, 26(3): 199-204. doi: 10.11715/rskxjs.R202003006
    [38]
    田艳飞, 孙磊, 娄春. 乙烯扩散火焰脉动特性的实验研究[J]. 工程热物理学报, 2015, 36(7): 1590-1595. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201507042.htm

    TIAN Y F, SUN L, LOU C. Experimental investigations of ethylene diffusion flames flickering characteristics[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1590-1595. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201507042.htm
    [39]
    NG W B, CLOUGH E, SYED K J, et al. The combined investigation of the flame dynamics of an industrial gas turbine combustor using high-speed imaging and an optically integrated data collection method[J]. Measurement Science and Techno-logy, 2004, 15(11): 2303-2309. doi: 10.1088/0957-0235/15/11/016
    [40]
    YAN Y, LU G, COLECHIN M. Monitoring and characteri-sation of pulverised coal flames using digital imaging techniques[J]. Fuel, 2002, 81(5): 647-655. doi: 10.1016/S0016-2361(01)00161-2
    [41]
    田辛. 用双色法研究内燃机燃烧火焰的温度场及碳烟浓度场[D]. 北京: 清华大学, 2004.

    TIAN X. Study on IC engine flame temperature and soot with two-color method[D]. Beijing: Tsinghua University, 2004.
    [42]
    薛飞, 李晓东, 倪明江, 等. 基于面阵CCD的火焰温度场测量方法研究[J]. 中国电机工程学报, 1999, 19(1): 39-41, 66. doi: 10.3521/j.issn:0258-8013.1999.01.010

    XUE F, LI X D, NI M J, et al. Research on temperature field measuring for combustion flame based on plane surface array CCD[J]. Proceedings of the CSEE, 1999, 19(1): 39-41, 66. doi: 10.3521/j.issn:0258-8013.1999.01.010
    [43]
    ZHANG Y D, LIU F S, LOU C. Experimental and numerical investigations of soot formation in laminar coflow ethylene flames burning in O2/N2 and O2/CO2 atmospheres at different O2 mole fractions[J]. Energy & Fuels, 2018, 32(5): 6252-6263. doi: 10.1021/acs.energyfuels.7b04069
    [44]
    CHAR J M, YEH J H. The measurement of open propane flame temperature using infrared technique[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 56(1): 135-144. doi: 10.1016/0022-4073(96)00013-1
    [45]
    娄春. 煤粉炉内三维温度场及颗粒辐射特性重建[D]. 武汉: 华中科技大学, 2007.

    LOU C. Reconstruction of 3-D temperature distribution and radiative properties of particulates in pulverized-coal-fired boilers furnaces[D]. Wuhan: Huazhong University of Science and Technology, 2007. doi: 10.7666/d.d092964
    [46]
    ZHOU H C, LOU C, CHENG Q, et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1699-1706. doi: 10.1016/j.proci.2004.08.090
    [47]
    LOU C, ZHOU H C. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation[J]. Combustion and Flame, 2005, 143(1-2): 97-105. doi: 10.1016/j.combustflame.2005.05.005
    [48]
    娄春, 周怀春. 光学厚度对大型炉膛三维温度场重建的影响分析[J]. 中国电机工程学报, 2007, 27(32): 52-56. doi: 10.3521/j.issn:0258-8013.2007.32.010

    LOU C, ZHOU H C. Analysis of effects of optical thickness on reconstruction of three-dimensional temperature in large-scale furnaces[J]. Proceedings of the CSEE, 2007, 27(32): 52-56. doi: 10.3521/j.issn:0258-8013.2007.32.010
    [49]
    严建华, 马增益, 王飞, 等. 运用代数迭代技术由火焰图像重建三维温度场[J]. 燃烧科学与技术, 2000, 6(3): 258-261. doi: 10.3521/j.issn:1006-8740.2000.03.016

    YAN J H, MA Z Y, WANG F, et al. Three-dimensional temperature field reconstruction from flame images using algebraic reconstruction technique[J]. Journal of Combustion Science and Technology, 2000, 6(3): 258-261. doi: 10.3521/j.issn:1006-8740.2000.03.016
    [50]
    王飞, 马增益, 严建华, 等. 利用火焰图像重建三维温度场的模型和实验[J]. 燃烧科学与技术, 2004, 10(2): 140-145. doi: 10.3521/j.issn:1006-8740.2004.02.009

    WANG F, MA Z Y, YAN J H, et al. Model and experiment for three-dimensional temperature measurement based on flame image[J]. Journal of Combustion Science and Technology, 2004, 10(2): 140-145. doi: 10.3521/j.issn:1006-8740.2004.02.009
    [51]
    黄群星, 刘冬, 王飞, 等. 基于截断奇异值分解的三维火焰温度场重建研究[J]. 物理学报, 2007, 56(11): 6742-6748. doi: 10.3521/j.issn:1000-3290.2007.11.096

    HUANG Q X, LIU D, WANG F, et al. Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition[J]. Acta Physica Sinica, 2007, 56(11): 6742-6748. doi: 10.3521/j.issn:1000-3290.2007.11.096
    [52]
    刘冬. 弥散介质温度场重建的辐射反问题研究[D]. 杭州: 浙江大学, 2010.

    LIU D. Study on inverse radiation problem of temperature distribution reconstruction in participating medium[D]. Hangzhou: Zhejiang University, 2010.
    [53]
    娄春, 周怀春, 吕传新, 等. 电站锅炉炉内三维温度场在线检测与分析[J]. 热能动力工程, 2005, 20(1): 61-64, 107. doi: 10.3969/j.issn.1001-2060.2005.01.016

    LOU C, ZHOU H C, LYU C X, et al. On-line detection and analysis of the three-dimensional temperature field in a utility boiler[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(1): 61-64, 107. doi: 10.3969/j.issn.1001-2060.2005.01.016
    [54]
    程强, 周怀春, 娄春, 等. 工业炉三维温度场可视化试验研究[J]. 工业加热, 2005, 34(1): 19-23. doi: 10.3969/j.issn.1002-1639.2005.01.006

    CHENG Q, ZHOU H C, LOU C, et al. Experimental visualization of three-dimensional temperature field in an industrial furnace[J]. Industrial Heating, 2005, 34(1): 19-23. doi: 10.3969/j.issn.1002-1639.2005.01.006
    [55]
    ZHANG X Y, CHENG Q, LOU C, et al. An improved colorimetric method for visualization of 2-D, inhomogeneous temperature distribution in a gas fired industrial furnace by radiation image processing[J]. Proceedings of the Combustion Institute, 2011, 35(2): 2755-2762. doi: 10.1016/j.proci.2010.06.119
    [56]
    邱淑荣, 窦春玉, 娄春, 等. 纵火体燃烧三维温度场检测研究[J]. 火工品, 2013(5): 53-56. doi: 10.3969/j.issn.1003-1480.2013.05.014

    QIU S R, DOU C Y, LOU C, et al. Study on three dimensional temperature field detection of burning incendiary member[J]. Initiators & Pyrotechnics, 2013(5): 53-56. doi: 10.3969/j.issn.1003-1480.2013.05.014
    [57]
    闫伟杰, 张向宇, 娄春, 等. 热气机燃烧室内三维温度场可视化实验研究[J]. 工程热物理学报, 2013, 34(10): 1969-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310041.htm

    YAN W J, ZHANG X Y, LOU C, et al. Experimental investigations of visualization of three-dimensional temperature fields in combustion chamber of a stirling engine[J]. Journal of Engineering Thermophysics, 2013, 34(10): 1969-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310041.htm
    [58]
    刘建浩, 娄春, 陈晓冰, 等. 基于图像法的玻璃熔窑温度检测实验研究[J]. 玻璃, 2016, 43(6): 3-7. doi: 10.3969/j.issn.1003-1987.2016.06.001

    LIU J H, LOU C, CHEN X B, et al. Experimental research on glass furnace temperature detection based on image method[J]. Glass, 2016, 43(6): 3-7. doi: 10.3969/j.issn.1003-1987.2016.06.001
    [59]
    HUANG Q X, WANG F, LIU D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J]. Combustion and Flame, 2009, 156(3): 565-573. doi: 10.1016/j.combustflame.2009.01.001
    [60]
    XU C L, ZHAO W C, HU J H, et al. Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement[J]. Fuel, 2017, 196: 550-563. doi: 10.1016/j.fuel.2017.01.115
    [61]
    HUANG X, QI H, NIU C Y, et al. Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique[J]. Applied Thermal Engineering, 2017, 115: 1357-1347. doi: 10.1016/j.applthermaleng.2016.12.029
    [62]
    NI M J, ZHANG H D, WANG F, et al. Study on the detection of three-dimensional soot temperature and volume fraction fields of a laminar flame by multispectral imaging system[J]. Applied Thermal Engineering, 2016, 96: 421-431. doi: 10.1016/j.applthermaleng.2015.11.116
    [63]
    WANG F, XIE Z C, YAN J H, et al. Simultaneous measurement of three-dimensional particle temperature, particle concentration, and H2O concentration distributions using multispectral flame images[J]. Combustion Science and Technology, 2017, 189(11): 1891-1906. doi: 10.1080/00102202.2017.1358692
    [64]
    LIU H W, ZHENG S, ZHOU H C. Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyperspectral tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2): 315-324. doi: 10.1109/tim.2016.2631798
    [65]
    REN T, MODEST M F, FATEEV A, et al. Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements[J]. Applied Energy, 2019, 252: 113448. doi: 10.1016/j.apenergy.2019.113448
    [66]
    LOU C, ZHOU H C, YU P F, et al. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2771-2778. doi: 10.1016/j.proci.2006.07.178
    [67]
    LOU C, LI W H, ZHOU H C, et al. Experimental investigation on simultaneous measurement of temperature distributions and radiative properties in an oil-fired tunnel furnace by radiation analysis[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 1-8. doi: 10.1016/j.ijheatmasstransfer.2010.10.007
    [68]
    YAN W J, LOU C. Two-dimensional distributions of temperature and soot volume fraction inversed from visible flame images[J]. Experimental Thermal and Fluid Science, 2013, 50: 229-235. doi: 10.1016/j.expthermflusci.2013.05.013
    [69]
    浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000.

    PU R L, GONG P. Hyperspectralremote sensing and its applications[M]. Beijing: Higher Education Press, 2000.
    [70]
    GHAHRAMANI Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 2015, 521(7553): 452-459. doi: 10.1038/nature14541
    [71]
    李智, 张仲侬, 娄春. 大型燃煤锅炉内辐射熵产及辐射㶲试验研究[J]. 洁净煤技术, 2019, 25(3): 88-93. doi: 10.13226/j.issn.1006-6772.19042201

    LI Z, ZHANG Z N, LOU C. Experimental investigation on radiative entropy generation and radiative exergy in a large coal-fired boiler[J]. Clean Coal Technology, 2019, 25(3): 88-93. doi: 10.13226/j.issn.1006-6772.19042201
    [72]
    National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Aeronautics and Space Engineering Board, Committee on Advanced Technolo-gies for Gas Turbines. Advanced technologies for gas turbines[M]. Washington, DC: National Academies Press, 2020. doi: 10.17226/25630
    [73]
    RUAN C, YU T, CHEN F E, et al. Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence[J]. Energy, 2019, 170: 744-751. doi: 10.1016/j.energy.2018.12.215
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article Metrics

    Article views (897) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return