Citation: | WANG Yulan, FAN Xiongjie, GAO Wei, LIU Cunxi, YANG Jinhu, LIU Fuqiang, MU yong, XU Gang. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18-33. DOI: 10.11729/syltlx20190171 |
[1] |
金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.
JIN R S, SUO J Q. Advanced gas turbine combustor[M]. Beijing: Aviation industry press, 2016.
|
[2] |
林宇震, 林阳, 张弛, 等. 先进燃烧室分级燃烧空气流量分配的探讨[J]. 航空动力学报, 2010, 25(9): 1923-1930. DOI: 10.13224/j.cnki.jasp.2010.09.007
LIN Y Z, LIN Y, ZHANG C, et al. Discussion on combustion airflow distribution of advanced staged combustor[J]. Journal of Aerospace Power, 2010, 25(9): 1923-1930. doi: 10.13224/j.cnki.jasp.2010.09.007
|
[3] |
林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.
LIN Y Z, XU Q H, LIU G E. Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008.
|
[4] |
LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions[M]. 3rd ed. Boca Raton, FL: CRC Press, 2010.
|
[5] |
张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350. DOI: 10.7527/S1000-6893.2013.0358
ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350. doi: 10.7527/S1000-6893.2013.0358
|
[6] |
ALDÉN M, BOOD J, LI Z S, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1): 69-97. doi: 10.1016/j.proci.2010.09.004
|
[7] |
BOUDIER G, GICQUEL L Y M, POINSOT T, et al. Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber[J]. Proceedings of the Combustion Institute, 2007, 31(2): 3075-3082. doi: 10.1016/j.proci.2006.07.067
|
[8] |
MONGIA H C, AL-ROUB M, DANIS A, et al. Swirl cup modeling part Ⅰ[R]. AIAA 2001-3576, 2001.
|
[9] |
FU Y Q, CAI J, JENG S M, et al. Confinement effects on the swirling flow of a counter-rotating swirl cup[C]//Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA. 2008: 469-478. doi: 10.1115/GT2005-68622
|
[10] |
KAO Y H, DENTON M, WANG X H, et al. Experimental spray structure and combustion of a linearly-arranged 5-swirler array[C]//Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-42509
|
[11] |
FU Y Q, CAI J, JENG S M, et al. Reacting spray structure of a counter-rotating swirl cup[C]//Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, 2008. doi: 10.1115/GT2005-68490
|
[12] |
MOHAMMAD B S, CAI J, JENG S M. Gas turbine single annular combustor sector aerodynamics[R]. AIAA 2010-579, 2010.
|
[13] |
HASSA C, VOIGT P, LEHMANN B, et al. Flow field mixing characteristics of an aero-engine combustor-part Ⅰ: experimental results[R]. AIAA 2002-3709, 2002. doi: 10.2514/6.2002-3709
|
[14] |
MOHAMMAD B, JENG S M, ANDAC M G. Influence of the primary jets and fuel injection on the aerodynamics of a prototype annular gas turbine combustor sector[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, 2010. doi: 10.1115/GT2010-23083
|
[15] |
KWONG W Y P, STEINBERG A M. Effect of inter-nozzle spacing on lean blowoff performance of a linear multi-nozzle combustor[R]. AIAA 2019-2244, 2019. doi: 10.2514/6.2019-2244
|
[16] |
WILLERT C, JARIUS M. Planar flow field measurements in atmospheric and pressurized combustion Chambers[J]. Experiments in Fluids, 2002, 33(6): 931-939. doi: 10.1007/s00348-002-0515-7
|
[17] |
COCHET A, BODOC V, BROSSARD C, et al. ONERA test facilities for combustion in aero gas turbine engines, and associated optical diagnostics[J]. AerospaceLab, 2016(11): 16 doi: 10.12762/2016.AL11-01
|
[18] |
XIAO Y L, WANG Z P, LAI Z X, et al. Flow field and species concentration measurements in the primary zone of an aero-engine combustion chamber[J]. Advances in Mechanical Engineering, 2018, 10(1): 1-11. doi: 10.1177/1687814017748052
|
[19] |
SULABH KUMAR D. An experimental study of the stable and unstable operation of an llp gas turbine combustor[D]. Ann Arbor, MI: The University of Michigan, 2008.
|
[20] |
DHANUKA S K, TEMME J E, DRISCOLL J F. Lean-limit combustion instabilities of a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2961-2966. doi: 10.1016/j.proci.2010.07.011
|
[21] |
CARL M, FRODERMANN M, BEHRENDT T, et al. Experimental investigations of an axially staged combustor sector with optical diagnostics at realistic operating conditions[C]//Proceedings of the RTO AVT Symposium on Gas Turbine Engine Combustion, Emissions and Alternative Fuels. 1998.
|
[22] |
ZARZALIS N, RIPPLINGER T, HOHMANN S, et al. Low-NOx combustor development pursued within the scope of the Engine 3E German national research program in a cooperative effort among engine manufacturer MTU, University of Karlsruhe and DLR German Aerospace Research Center[J]. Aerospace Science and Technology, 2002, 6(7): 531-544. doi: 10.1016/S1270-9638(02)01179-3
|
[23] |
FREITAG S, BEHRENDT T, HEINZE J, et al. Study of an airblast atomizer spray in a lean burn aero-engine model combustor at engine conditions[C]//Proceedings of the 24th European Conference on Liquid Atomization and Spray Systems. 2011.
|
[24] |
MATSUURA K, KUROSAWA Y, YAMADA H. Develop-ment of high-pressure spray test facility for evaluation of aero-engine fuel injector performance[R]. JAXA RM06-010, 2007.
|
[25] |
MATSUURA K, SUAUKI K, KUROSAWA Y. Effects of ambient pressure on spray characteristics of a high-shear-type aero-engine airblast fuel injector[C]//Proceedings of the 22nd European Conference on Liquid Atomization and Spray Systems (ILASS). 2008.
|
[26] |
MAKIDA M, YAMADA H, SHIMODAIRA K, et al. Verification of low NOx performance of simple primary rich combustion approach by a newly established full annular combustor test facility[C]//Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2008-51419
|
[27] |
YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Research and development of staging fuel nozzle for aeroengine[C]//Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2009-59852
|
[28] |
KOBAYASHI M, OGATA H, ODA T, et al. Improvement on ignition performance for a lean staged low NOx combustor[C]//Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2012. doi: 10.1115/GT2011-46187
|
[29] |
MATSUYAMA R, KOBAYASHI M, OGATA H, et al. Development of a lean staged combustor for small aero-engines[C]//Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2012-68272
|
[30] |
颜应文, 徐榕, 邓远灏, 等. 贫油预混预蒸发低污染燃烧室头部流场研究[J]. 航空学报, 2012, 33(6): 965-976. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206002.htm
YAN Y W, XU R, DENG Y H, et al. Flow field study for head of lean premixed prevaporized low-emission combustor[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 965-976. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206002.htm
|
[31] |
邓远灏, 颜应文, 党龙飞, 等. 贫油预混预蒸发低污染燃烧室流场特性试验[J]. 航空动力学报, 2015, 30(10): 2416-2424. DOI: 10.13224/j.cnki.jasp.2015.10.016
DENG Y H, YAN Y W, DANG L F, et al. Experiment of flow field characteristics in a lean premixed prevaporized low emission combustor[J]. Journal of Aerospace Power, 2015, 30(10): 2416-2424. doi: 10.13224/j.cnki.jasp.2015.10.016
|
[32] |
颜应文, 党龙飞, 邓远灏, 等. LPP低污染燃烧室单头部燃烧性能试验[J]. 航空动力学报, 2015, 30(4): 814-822. DOI: 10.13224/j.cnki.jasp.2015.04.007
YAN Y W, DANG L F, DENG Y H, et al. Experiment of combustion performance in LPP low emission combustor with single dome[J]. Journal of Aerospace Power, 2015, 30(4): 814-822. doi: 10.13224/j.cnki.jasp.2015.04.007
|
[33] |
WANG B, ZHANG C, LIN Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(1): 011501. doi: 10.1115/1.4034154
|
[34] |
LIU C X, LIU F Q, YANG J H, et al. Experimental investigation of spray and combustion performances of a fuel-staged low emission combustor: effects of main swirl angle[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 121502. doi: 10.1115/1.4037451
|
[35] |
陈柳君, 乐嘉陵, 张俊, 等. 三级轴向旋流燃烧室流场结构研究[J]. 推进技术, 2018, 39(8): 1821-1828. DOI: 10.13675/j.cnki.tjjs.2018.08.017
CHEN L J, LE J L, ZHANG J, et al. Experimental investigation of flow field in an aero-engine combustor with triple-stage axial-rotating swirling[J]. Journal of Propulsion Technology, 2018, 39(8): 1821-1828. doi: 10.13675/j.cnki.tjjs.2018.08.017
|
[36] |
CHENF, LIU H. Particle image velocimetry for combustion measurements: Applications and developments[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1407-1427. doi: 10.1016/j.cja.2018.05.010
|
[37] |
SO R M C, AHMED S A, MONGIA H C. Jet characteristics in confined swirling flow[J]. Experiments in Fluids, 1985, 3(4): 221-230. doi: 10.1007/bf00265105
|
[38] |
KAO Y H, TAMBE S B, JENG S M. Aerodynamics of linearly arranged rad-rad swirlers, effect of number of swirlers and alignment[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2013-94280
|
[39] |
KAO Y H, TAMBE S B, JENG S M. Aerodynamics study of a linearly-arranged 5-swirler array[C]//Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. 2014. doi: 10.1115/GT2014-25094
|
[40] |
HUO W Y, LIN Y Z, ZHANG C, et al. Effect of boundary conditions on downstream vorticity from counter-rotating swirlers[J]. Chinese Journal of Aeronautics, 2015, 28(1): 34-43. doi: 10.1016/j.cja.2014.12.014
|
[41] |
FAN X J, LIU C X, XU G, et al. Experimental investigations of the spray structure and interactions between sectors of a double-swirl low-emission combustor[J]. Chinese Journal of Aeronautics, 2020, 33(2): 589-597. doi: 10.1016/j.cja.2019.09.009
|
[42] |
GIRIDHARAN M G, MONGIA H C, JENG S-M. Swirl cup modeling-Part Ⅷ: Spray combustion in CFM-56 single cup flame tube[R]. AIAA 2003-0319, 2003. doi: 10.2514/6.2003-319
|
[43] |
MONGIA H C, GORE J P, GRINSTEIN F F, et al. Combustion research needs for helping development of next-generation advanced combustors[R]. AIAA 2001-3583, 2001.
|
[44] |
COLBY J A, MENON S, JAGODA J. Spray and emission characteristics near lean blow out in a counter-swirl stabilized gas turbine combustor[C]//Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2006-90974
|
[45] |
DRISCOLL J F, TEMME J. Role of swirl in flame stabilization[R]. AIAA 2011-108, 2011.
|
[46] |
FOUST M, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[R]. AIAA 2012-936, 2012. doi: 10.2514/6.2012-936
|
[47] |
LAZIK W, DOERR T, BAKE S, et al. Development of Lean-burn low-NOx combustion technology at rolls-Royce Deutschland[C]// Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2008-51115
|
[48] |
MEIER U, FREITAG S, HEINZE J, et al. Characterisation of lean burn module air blast pilot injector with laser techniques[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013.
|
[49] |
吴浩玮, 陈浩, 刘存喜, 等. 预燃级内级旋流对燃烧室点/熄火性能的影响[J]. 燃烧科学与技术, 2017, 23(6): 560-566. DOI: 10.11715/rskxjs.R201611016
WU H W, CHEN H, LIU C X, et al. Effect of pilot-inner-staged swirl on ignition and blowout performance of combustor[J]. Journal of Combustion Science and Technology, 2017, 23(6): 560-566. doi: 10.11715/rskxjs.R201611016
|
[50] |
LIU C X, LIU F Q, YANG J H, et al. Experimental investigation of spray and combustion performances of a fuel-staged low emission combustor: effects of main swirl angle[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 121502. doi: 10.1115/1.4037451
|
[51] |
YANG J H, LIU C X, LIU F Q, et al. Experimental and numerical study of the effect of main stage stratifier length on lean blow-out performance for a stratified partially premixed injector[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(7): 812-825. doi: 10.1177/0957650918758227
|
1. |
陆逸然,王晋军. 高效合成射流激励器研究进展及展望. 力学进展. 2024(01): 61-85 .
![]() |