ZHENG Xu, Zhanhua SILBER-LI. Research progress of slip on the liquid-solid interface[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 80-88. DOI: 10.11729/syltlx20190164
Citation: ZHENG Xu, Zhanhua SILBER-LI. Research progress of slip on the liquid-solid interface[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 80-88. DOI: 10.11729/syltlx20190164

Research progress of slip on the liquid-solid interface

More Information
  • Received Date: December 16, 2019
  • Revised Date: February 23, 2020
  • Boundary slip is a long-standing scientific problem in the research of fluid mechanics, and is a highly attractive issue in micro/nanofluidics. Recently, the research community has gradually reached a consensus on the slip length of simple liquid (such as water) on smooth liquid-solid interface. However, the slip of complex fluids on liquid-solid interface has become an emerging and attractive issue. Therefore, this paper reviews the new experimental results and theoretical descriptions obtained in the research progress from the simple liquid to complex fluids. In particular, we mainly introduce how to understand the slip of complex fluids on the liquid-solid interface and its impacts, based on the recent experimental results in polyelectrolyte solutions from Prof. Charlaix's group using surface force apparatus.
  • [1]
    李战华, 郑旭.微纳米尺度流动实验研究的问题与进展[J].实验流体力学, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml

    LI Z H, ZHENG X. The problems and progress in the experimental study of micro/nano-scale flow[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml
    [2]
    BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3):1073-1095. DOI: 10.1039/B909366B
    [3]
    NETO C, EVANS D R, BONACCURSO E, et al. Boundary slip in Newtonian liquids:a review of experimental studies[J]. Reports on Progress in Physics, 2005, 68(12):2859-2897. DOI: 10.1088/0034-4885/68/12/R05
    [4]
    CUI H H, SILBER-LI Z H, ZHU S N. Flow characteristics of liquids in microtubes driven by a high pressure[J]. Physics of Fluids, 2004, 16(5):1803-1810. DOI: 10.1063/1.1691457
    [5]
    ZHENG X, KONG G P, SILBER-LI Z H. The influence of nano-particles tracers on the slip length measurements by microPTV[J]. Acta Mechanica Sinica, 2013, 29(3):411-419. DOI: 10.1007/s10409-013-0027-0
    [6]
    NAVIER C L M H. Mémoire sur les lois du movement des fluids[J]. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 1823, 6:389-440.
    [7]
    CROSS B, BARRAUD C, PICARD C, et al. Wall slip of complex fluids:interfacial friction versus slip length[J]. Physical Review Fluids, 2018(3):062001(R).
    [8]
    郑旭.光滑及带微结构表面的液体滑移实验研究[D].北京: 中国科学院研究生院, 2009. http://d.g.wanfangdata.com.cn/Thesis_Y1629688.aspx
    [9]
    TRETHEWAY D C, MEINHART C D. A generating mechanism for apparent fluid slip in hydrophobic microchannels[J]. Physics of Fluids, 2004, 16(5):1509-1515. DOI: 10.1063/1.1669400
    [10]
    COTTIN-BIZONNE C, CROSS B, STEINBERGER A, et al. Boundary slip on smooth hydrophobic surfaces:intrinsic effects and possible artifacts[J]. Physical Review Letters, 2005, 94(5):056102. DOI: 10.1103/PhysRevLett.94.056102
    [11]
    HUANG P, GUASTO J S, BREUER K S. Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry[J]. Journal of Fluid Mechanics, 566:447-464. DOI: 10.1017/S0022112006002229
    [12]
    CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters, 2006, 96(6):066001. DOI: 10.1103/PhysRevLett.96.066001
    [13]
    AUDRY M-C, PIEDNOIR A, JOSEPH P. Amplification of electro-osmotic flows by wall slippage:direct measurements on OTS-surfaces[J]. Faraday Discussions, 2010, 146:113-124. DOI: 10.1039/b927158a
    [14]
    SCHAEFFEL D, YORDANOV S, SCHMELZEISEN M, et al. Hydrodynamic boundary condition of water on hydrophobic surfaces[J]. Physical Review E, 2013, 87(5):051001. DOI: 10.1103/PhysRevE.87.051001
    [15]
    KANNAM S K, TODD B, HANSEN J S. How fast does water flow in carbon nanotubes?[J]. The Journal of Chemical Physics, 2013, 138(9):094701. DOI: 10.1063/1.4793396
    [16]
    LI Z Z, D'ERAMO L, LEE C, et al. Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking[J]. Journal of Fluid Mechanics, 2015, 766:147-171. DOI: 10.1017/jfm.2015.12
    [17]
    SIRIA A, PONCHARAL P, BIANCE A L, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube[J]. Nature, 2013, 494(7438):455-458. DOI: 10.1038/nature11876
    [18]
    SECCHI E, MARBACH S, NIGUÈS A, et al. Massive radius-dependent flow slippage in single carbon nanotubes[J]. Nature, 2016, 537(7619):210-213. DOI: 10.1038/nature19315
    [19]
    CUENCA A, BODIGUEL H. Submicron flow of polymer solutions:slippage reduction due to confinement[J]. Physical Review Letters, 2013, 110(10):108304. DOI: 10.1103/PhysRevLett.110.108304
    [20]
    BÄUMCHEN O, JACOBS K. Slip effects in polymer thin films[J]. Journal of Physics:Condensed Matter, 2010, 22(3):033102. DOI: 10.1088/0953-8984/22/3/033102
    [21]
    BARRAUD C, CROSS B, PICARD C, et al. Large slippage and depletion layer at the polyelectrolyte/solid interface[J]. Soft Matter, 2019, 15:6308-6317. DOI: 10.1039/C9SM00910H
    [22]
    GARCIA L, BARRAUD C, PICARD C, et al. A micro-nano-rheometer for the mechanics of soft matter at interfaces[J]. Review of Scientific Instruments, 2016, 87(11):113906. DOI: 10.1063/1.4967713
    [23]
    LEROY S, STEINBERGER A, COTTIN-BIZONNE C, et al. Hydrodynamic interaction between a spherical particle and an elastic surface:a gentle probe for soft thin films[J]. Physical Review Letters, 2012, 108(26):264501. DOI: 10.1103/PhysRevLett.108.264501
    [24]
    LEE T, CHARRAULT E, NETO C. Interfacial slip on rough, patterned and soft surfaces:a review of experiments and simulations[J]. Advances in Colloid and Interface Science, 2014, 210:21-38. DOI: 10.1016/j.cis.2014.02.015
    [25]
    LAUGA E, BRENNER M P, STONE H A. Microfluidics: the no-slip boundary condition[M]//Tropea C, Yarin A L, Foss J F. Springer handbook of experimental fluid mechanics. Berlin, Heidelberg: Springer, 2006: 1219-1240.
    [26]
    JING D L, BHUSHAN B. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag:a review[J]. Journal of Colloid and Interface Science, 2015, 454:152-179. DOI: 10.1016/j.jcis.2015.05.015
    [27]
    BARNES H A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscositmers:its cause, character, and cure[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 56(3):221-251. DOI: 10.1016/0377-0257(94)01282-M
    [28]
    BRILLOUIN M. Leçons sur la viscositédes liquides et des gaz[M]. Paris:Gauthier-Villars, 1907.
    [29]
    BOCQUET L, BARRAT J L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids[J]. Physical Review E, 1994, 49(4):3079-3092. DOI: 10.1103/PhysRevE.49.3079
    [30]
    HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle:a quasiuniversal relationship[J]. Physical Review Letters, 2008, 101(22):226101. DOI: 10.1103/PhysRevLett.101.226101
    [31]
    LUAN B Q, ZHOU R H. Wettability and friction of water on a MoS2 nanosheet[J]. Applied Physics Letters, 2016, 108(13):131601. DOI: 10.1063/1.4944840
    [32]
    CHOI C H, WESTIN K J A, BREUER K S. Apparent slip flows in hydrophilic and hydrophobic microchannels[J]. Physics of Fluids, 2003, 15(10):2897-2902. DOI: 10.1063/1.1605425
    [33]
    李战华, 吴健康, 胡国庆, 等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.
    [34]
    MAJUMDER M, CHOPRA N, ANDREWS R, et al. Nanoscale hydrodynamics:enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064):44. DOI: 10.1038/438044a
    [35]
    HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037. DOI: 10.1126/science.1126298
    [36]
    WHITBY M, CAGONON L, TAHANOU M. Enhanced fluid flow through nanoscale carbon pipes[J]. Nano Letters, 2008, 8(9):2632-2637. DOI: 10.1021/nl080705f
    [37]
    QIN X C, YUAN Q Z, ZHAO Y P, et al. Measurement of the rate of water translocation through carbon nanotubes[J]. Nano Letters, 2011, 11(5):2173-2177. DOI: 10.1021/nl200843g
    [38]
    SHARMA P, MOTTE J F, FOURNEL F, et al. A direct sensor to measure minute liquid flow rates[J]. Nano Letters, 2018, 18(9):5726-5730. DOI: 10.1021/acs.nanolett.8b02332
    [39]
    JOSEPH P, TABELING P. Direct measurement of the apparent slip length[J]. Physical Review E, 2005, 71(3 Pt 2A):035303. DOI: 10.1103-PhysRevE.71.035303/
    [40]
    LAUGA E. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions[J]. Langmuir, 2004, 20:8924-8930. DOI: 10.1021/la049464r
    [41]
    ZHENG X, SHI F, SILBER-LI Z H. Study on the statistical intensity distribution (SID) of fluorescent nanoparticles in TIRFM measurement[J]. Microfluidics and Nanofluidics, 2018, 22:127. DOI: 10.1007/s10404-018-2145-2
    [42]
    VINOGRADOVA O I. Drainage of a thin liquid film confined between hydrophobic surfaces[J]. Langmuir, 1995, 11(6):2213-2220. DOI: 10.1021/la00006a059
    [43]
    MARBACH S, BOCQUET L. Osmosis, from molecular insights to large-scale applications[J]. Chemical Society Reviews, 2019, 48(100):3102-3144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8827835ebf6eca8fce12b3537da45be7
    [44]
    SCHOCH R B, HAN J Y, RENAUD P. Transport phenomena in nanofluidics[J]. Review of Modern Physics, 2008, 80(3):839-883. DOI: 10.1103/RevModPhys.80.839
    [45]
    SILKINA E, ASMOLOV E S, VINOGRADOVA O I. Electro-osmotic flow in hydrophobic nanochannels[J]. Physical Chemistry Chemical Physics, 2019, 21(41):23036-23043. DOI: 10.1039/C9CP04259H
    [46]
    DE GENNES P G. Polymer solutions near an interface. adsorption and depletion layers[J]. Macromolecules, 1981, 14(6):1637-1644. DOI: 10.1021/ma50007a007
    [47]
    THOMPSON P A, TROIAN S M. A general boundary condition for liquid flows at solid surfaces[J]. Nature, 1997, 389(6649):360-362. DOI: 10.1038/38686
    [48]
    GRAHAM M D. Fluid dynamics of dissolved polymer molecules in confined geometries[J]. Annual Review of Fluid Mechanics, 2011, 43(1):273-298. DOI: 10.1146/annurev-fluid-121108-145523
    [49]
    LAINÉA, JUBIN L, CANALE L, et al. MicroMegascope based dynamic surface force apparatus[J]. Nanotechnology, 2019, 30:195502. DOI: 10.1088/1361-6528/ab02ba
    [50]
    CHURAEV N V, DERJAGUIN B V, MULLER V M. Surface forces[M]. New York:Springer US, 1987.
    [51]
    DAIGUJI H. Ion transport in nanofluidic channels[J]. Chemical Society Reviews, 2010, 39(3):901-911. DOI: 10.1103-PhysRevLett.93.035901/
    [52]
    CHENG C, JIANG G P, SIMON G P, et al. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes[J]. Nature Nanotechnology, 2018, 13(8):685-690. DOI: 10.1038/s41565-018-0181-4
    [53]
    ZHANG H C, TIAN Y, JIANG L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels[J]. Nano Today, 2016, 11(1):61-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d05b7e0c1415f79aee124a211be6d61e
    [54]
    BETZIG E. Nobel Lecture:Single molecules, cells, and super-resolution optics[J]. Reviews of Modern Physics, 2015, 87(4):1153-1168. DOI: 10.1103/RevModPhys.87.1153
    [55]
    HELL S W. Nobel lecture:Nanoscopy with freely propagating light[J]. Reviews of Modern Physics, 2015, 87(4):1169-1181. DOI: 10.1103/RevModPhys.87.1169
    [56]
    SHU J J, TEO J B M, CHAN W K. Fluid velocity slip and temperature jump at a solid surface[J]. Applied Mechanics Reviews, 2017, 69(2):020801. DOI: 10.1115/1.4036191
    [57]
    SNOEYINK C, WERELEY S. A novel 3D3C particle tracking method suitable for microfluidic flow measurements[J]. Experiments in Fluids, 2013, 54(1):1453. DOI: 10.1007/s00348-012-1453-7
    [58]
    MAALI A, BOISGARD R, CHRAIBI H, et al. Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air-water interfaces[J]. Physical Review Letters, 2017, 118(8):084501. DOI: 10.1103/PhysRevLett.118.084501
    [59]
    VARAGNOLO S, FERRARO D, FANTINEL P, et al. Stick-slip sliding of water drops on chemically heterogeneous surfaces[J]. Physical Review Letters, 2013, 111(6):066101. DOI: 10.1103/PhysRevLett.111.066101
  • Cited by

    Periodical cited type(4)

    1. 李文凯,左志涛,张华良,沈昊天,刘俊杰,徐玉杰,陈海生. 探针对叶轮机械流场及性能影响的研究进展. 内燃机与配件. 2025(01): 1-5 .
    2. 陈伟,刘鸣飞,崔树鑫,牛家宏. 出口测量探针布局对轴流压气机气动性能试验的影响研究. 热能动力工程. 2024(01): 216-224 .
    3. 张学锋,薛彪,姚卡,孙琦,颜锐,吴艳. 进出口探针对压气机气动性能以及内部流动的影响. 汽轮机技术. 2024(06): 430-434+444 .
    4. 黄刚,刘婕妤,王瑶,梁仍康,杨思帆. 侵入式探针对单级高压涡轮的性能影响. 内燃机与配件. 2022(03): 65-68 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (563) PDF downloads (87) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close