Citation: | ZHENG Xu, Zhanhua SILBER-LI. Research progress of slip on the liquid-solid interface[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 80-88. DOI: 10.11729/syltlx20190164 |
[1] |
李战华, 郑旭.微纳米尺度流动实验研究的问题与进展[J].实验流体力学, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml
LI Z H, ZHENG X. The problems and progress in the experimental study of micro/nano-scale flow[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml
|
[2] |
BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3):1073-1095. DOI: 10.1039/B909366B
|
[3] |
NETO C, EVANS D R, BONACCURSO E, et al. Boundary slip in Newtonian liquids:a review of experimental studies[J]. Reports on Progress in Physics, 2005, 68(12):2859-2897. DOI: 10.1088/0034-4885/68/12/R05
|
[4] |
CUI H H, SILBER-LI Z H, ZHU S N. Flow characteristics of liquids in microtubes driven by a high pressure[J]. Physics of Fluids, 2004, 16(5):1803-1810. DOI: 10.1063/1.1691457
|
[5] |
ZHENG X, KONG G P, SILBER-LI Z H. The influence of nano-particles tracers on the slip length measurements by microPTV[J]. Acta Mechanica Sinica, 2013, 29(3):411-419. DOI: 10.1007/s10409-013-0027-0
|
[6] |
NAVIER C L M H. Mémoire sur les lois du movement des fluids[J]. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 1823, 6:389-440.
|
[7] |
CROSS B, BARRAUD C, PICARD C, et al. Wall slip of complex fluids:interfacial friction versus slip length[J]. Physical Review Fluids, 2018(3):062001(R).
|
[8] |
郑旭.光滑及带微结构表面的液体滑移实验研究[D].北京: 中国科学院研究生院, 2009. http://d.g.wanfangdata.com.cn/Thesis_Y1629688.aspx
|
[9] |
TRETHEWAY D C, MEINHART C D. A generating mechanism for apparent fluid slip in hydrophobic microchannels[J]. Physics of Fluids, 2004, 16(5):1509-1515. DOI: 10.1063/1.1669400
|
[10] |
COTTIN-BIZONNE C, CROSS B, STEINBERGER A, et al. Boundary slip on smooth hydrophobic surfaces:intrinsic effects and possible artifacts[J]. Physical Review Letters, 2005, 94(5):056102. DOI: 10.1103/PhysRevLett.94.056102
|
[11] |
HUANG P, GUASTO J S, BREUER K S. Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry[J]. Journal of Fluid Mechanics, 566:447-464. DOI: 10.1017/S0022112006002229
|
[12] |
CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters, 2006, 96(6):066001. DOI: 10.1103/PhysRevLett.96.066001
|
[13] |
AUDRY M-C, PIEDNOIR A, JOSEPH P. Amplification of electro-osmotic flows by wall slippage:direct measurements on OTS-surfaces[J]. Faraday Discussions, 2010, 146:113-124. DOI: 10.1039/b927158a
|
[14] |
SCHAEFFEL D, YORDANOV S, SCHMELZEISEN M, et al. Hydrodynamic boundary condition of water on hydrophobic surfaces[J]. Physical Review E, 2013, 87(5):051001. DOI: 10.1103/PhysRevE.87.051001
|
[15] |
KANNAM S K, TODD B, HANSEN J S. How fast does water flow in carbon nanotubes?[J]. The Journal of Chemical Physics, 2013, 138(9):094701. DOI: 10.1063/1.4793396
|
[16] |
LI Z Z, D'ERAMO L, LEE C, et al. Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking[J]. Journal of Fluid Mechanics, 2015, 766:147-171. DOI: 10.1017/jfm.2015.12
|
[17] |
SIRIA A, PONCHARAL P, BIANCE A L, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube[J]. Nature, 2013, 494(7438):455-458. DOI: 10.1038/nature11876
|
[18] |
SECCHI E, MARBACH S, NIGUÈS A, et al. Massive radius-dependent flow slippage in single carbon nanotubes[J]. Nature, 2016, 537(7619):210-213. DOI: 10.1038/nature19315
|
[19] |
CUENCA A, BODIGUEL H. Submicron flow of polymer solutions:slippage reduction due to confinement[J]. Physical Review Letters, 2013, 110(10):108304. DOI: 10.1103/PhysRevLett.110.108304
|
[20] |
BÄUMCHEN O, JACOBS K. Slip effects in polymer thin films[J]. Journal of Physics:Condensed Matter, 2010, 22(3):033102. DOI: 10.1088/0953-8984/22/3/033102
|
[21] |
BARRAUD C, CROSS B, PICARD C, et al. Large slippage and depletion layer at the polyelectrolyte/solid interface[J]. Soft Matter, 2019, 15:6308-6317. DOI: 10.1039/C9SM00910H
|
[22] |
GARCIA L, BARRAUD C, PICARD C, et al. A micro-nano-rheometer for the mechanics of soft matter at interfaces[J]. Review of Scientific Instruments, 2016, 87(11):113906. DOI: 10.1063/1.4967713
|
[23] |
LEROY S, STEINBERGER A, COTTIN-BIZONNE C, et al. Hydrodynamic interaction between a spherical particle and an elastic surface:a gentle probe for soft thin films[J]. Physical Review Letters, 2012, 108(26):264501. DOI: 10.1103/PhysRevLett.108.264501
|
[24] |
LEE T, CHARRAULT E, NETO C. Interfacial slip on rough, patterned and soft surfaces:a review of experiments and simulations[J]. Advances in Colloid and Interface Science, 2014, 210:21-38. DOI: 10.1016/j.cis.2014.02.015
|
[25] |
LAUGA E, BRENNER M P, STONE H A. Microfluidics: the no-slip boundary condition[M]//Tropea C, Yarin A L, Foss J F. Springer handbook of experimental fluid mechanics. Berlin, Heidelberg: Springer, 2006: 1219-1240.
|
[26] |
JING D L, BHUSHAN B. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag:a review[J]. Journal of Colloid and Interface Science, 2015, 454:152-179. DOI: 10.1016/j.jcis.2015.05.015
|
[27] |
BARNES H A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscositmers:its cause, character, and cure[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 56(3):221-251. DOI: 10.1016/0377-0257(94)01282-M
|
[28] |
BRILLOUIN M. Leçons sur la viscositédes liquides et des gaz[M]. Paris:Gauthier-Villars, 1907.
|
[29] |
BOCQUET L, BARRAT J L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids[J]. Physical Review E, 1994, 49(4):3079-3092. DOI: 10.1103/PhysRevE.49.3079
|
[30] |
HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle:a quasiuniversal relationship[J]. Physical Review Letters, 2008, 101(22):226101. DOI: 10.1103/PhysRevLett.101.226101
|
[31] |
LUAN B Q, ZHOU R H. Wettability and friction of water on a MoS2 nanosheet[J]. Applied Physics Letters, 2016, 108(13):131601. DOI: 10.1063/1.4944840
|
[32] |
CHOI C H, WESTIN K J A, BREUER K S. Apparent slip flows in hydrophilic and hydrophobic microchannels[J]. Physics of Fluids, 2003, 15(10):2897-2902. DOI: 10.1063/1.1605425
|
[33] |
李战华, 吴健康, 胡国庆, 等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.
|
[34] |
MAJUMDER M, CHOPRA N, ANDREWS R, et al. Nanoscale hydrodynamics:enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064):44. DOI: 10.1038/438044a
|
[35] |
HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037. DOI: 10.1126/science.1126298
|
[36] |
WHITBY M, CAGONON L, TAHANOU M. Enhanced fluid flow through nanoscale carbon pipes[J]. Nano Letters, 2008, 8(9):2632-2637. DOI: 10.1021/nl080705f
|
[37] |
QIN X C, YUAN Q Z, ZHAO Y P, et al. Measurement of the rate of water translocation through carbon nanotubes[J]. Nano Letters, 2011, 11(5):2173-2177. DOI: 10.1021/nl200843g
|
[38] |
SHARMA P, MOTTE J F, FOURNEL F, et al. A direct sensor to measure minute liquid flow rates[J]. Nano Letters, 2018, 18(9):5726-5730. DOI: 10.1021/acs.nanolett.8b02332
|
[39] |
JOSEPH P, TABELING P. Direct measurement of the apparent slip length[J]. Physical Review E, 2005, 71(3 Pt 2A):035303. DOI: 10.1103-PhysRevE.71.035303/
|
[40] |
LAUGA E. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions[J]. Langmuir, 2004, 20:8924-8930. DOI: 10.1021/la049464r
|
[41] |
ZHENG X, SHI F, SILBER-LI Z H. Study on the statistical intensity distribution (SID) of fluorescent nanoparticles in TIRFM measurement[J]. Microfluidics and Nanofluidics, 2018, 22:127. DOI: 10.1007/s10404-018-2145-2
|
[42] |
VINOGRADOVA O I. Drainage of a thin liquid film confined between hydrophobic surfaces[J]. Langmuir, 1995, 11(6):2213-2220. DOI: 10.1021/la00006a059
|
[43] |
MARBACH S, BOCQUET L. Osmosis, from molecular insights to large-scale applications[J]. Chemical Society Reviews, 2019, 48(100):3102-3144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8827835ebf6eca8fce12b3537da45be7
|
[44] |
SCHOCH R B, HAN J Y, RENAUD P. Transport phenomena in nanofluidics[J]. Review of Modern Physics, 2008, 80(3):839-883. DOI: 10.1103/RevModPhys.80.839
|
[45] |
SILKINA E, ASMOLOV E S, VINOGRADOVA O I. Electro-osmotic flow in hydrophobic nanochannels[J]. Physical Chemistry Chemical Physics, 2019, 21(41):23036-23043. DOI: 10.1039/C9CP04259H
|
[46] |
DE GENNES P G. Polymer solutions near an interface. adsorption and depletion layers[J]. Macromolecules, 1981, 14(6):1637-1644. DOI: 10.1021/ma50007a007
|
[47] |
THOMPSON P A, TROIAN S M. A general boundary condition for liquid flows at solid surfaces[J]. Nature, 1997, 389(6649):360-362. DOI: 10.1038/38686
|
[48] |
GRAHAM M D. Fluid dynamics of dissolved polymer molecules in confined geometries[J]. Annual Review of Fluid Mechanics, 2011, 43(1):273-298. DOI: 10.1146/annurev-fluid-121108-145523
|
[49] |
LAINÉA, JUBIN L, CANALE L, et al. MicroMegascope based dynamic surface force apparatus[J]. Nanotechnology, 2019, 30:195502. DOI: 10.1088/1361-6528/ab02ba
|
[50] |
CHURAEV N V, DERJAGUIN B V, MULLER V M. Surface forces[M]. New York:Springer US, 1987.
|
[51] |
DAIGUJI H. Ion transport in nanofluidic channels[J]. Chemical Society Reviews, 2010, 39(3):901-911. DOI: 10.1103-PhysRevLett.93.035901/
|
[52] |
CHENG C, JIANG G P, SIMON G P, et al. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes[J]. Nature Nanotechnology, 2018, 13(8):685-690. DOI: 10.1038/s41565-018-0181-4
|
[53] |
ZHANG H C, TIAN Y, JIANG L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels[J]. Nano Today, 2016, 11(1):61-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d05b7e0c1415f79aee124a211be6d61e
|
[54] |
BETZIG E. Nobel Lecture:Single molecules, cells, and super-resolution optics[J]. Reviews of Modern Physics, 2015, 87(4):1153-1168. DOI: 10.1103/RevModPhys.87.1153
|
[55] |
HELL S W. Nobel lecture:Nanoscopy with freely propagating light[J]. Reviews of Modern Physics, 2015, 87(4):1169-1181. DOI: 10.1103/RevModPhys.87.1169
|
[56] |
SHU J J, TEO J B M, CHAN W K. Fluid velocity slip and temperature jump at a solid surface[J]. Applied Mechanics Reviews, 2017, 69(2):020801. DOI: 10.1115/1.4036191
|
[57] |
SNOEYINK C, WERELEY S. A novel 3D3C particle tracking method suitable for microfluidic flow measurements[J]. Experiments in Fluids, 2013, 54(1):1453. DOI: 10.1007/s00348-012-1453-7
|
[58] |
MAALI A, BOISGARD R, CHRAIBI H, et al. Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air-water interfaces[J]. Physical Review Letters, 2017, 118(8):084501. DOI: 10.1103/PhysRevLett.118.084501
|
[59] |
VARAGNOLO S, FERRARO D, FANTINEL P, et al. Stick-slip sliding of water drops on chemically heterogeneous surfaces[J]. Physical Review Letters, 2013, 111(6):066101. DOI: 10.1103/PhysRevLett.111.066101
|