Citation: | SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. DOI: 10.11729/syltlx20190135 |
[1] |
KYCHAKOFF G, PAUL P H, VAN CRUYNINGEN I, et al. Movies and 3-D images of flowfields using planar laser-induced fluorescence[J]. Applied Optics, 1987, 26(13): 2498-2500. DOI: 10.1364/AO.26.002498
|
[2] |
YIP B, LAM J K, WINTER M, et al. Time-resolved three-dimensional concentration measurements in a gas jet[J]. Science, 1987, 235(4793): 1209-1211. DOI: 10.1126/science.235.4793.1209
|
[3] |
NG R, LEVOY M, BRÉDIF M, et al. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report CSTR, 2005, 2(11): 1-11. http://cn.bing.com/academic/profile?id=91b07568d85e3e2056e7e33d32a4e64c&encoded=0&v=paper_preview&mkt=zh-cn
|
[4] |
TROLINGER J D, HEAP M P. Coal particle combustion studied by holography[J]. Applied Optics, 1979, 18(11): 1757-1762. DOI: 10.1364/AO.18.001757
|
[5] |
CHO K Y, SATIJA A, POURPOINT T L, et al. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion[J]. Applied Optics, 2014, 53(3): 316-326. DOI: 10.1364/AO.53.000316
|
[6] |
HARKER M, HATTRELL T, LAWES M, et al. Measurements of the three-dimensional structure of flames at low turbulence[J]. Combustion Science, 2012, 184(10-11): 1818-1837. DOI: 10.1080/00102202.2012.691775
|
[7] |
HULT J, OMRANE A, NYGREN J, et al. Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames[J]. Experiments in Fluids, 2002, 33(2): 265-269. DOI: 10.1007/s00348-002-0410-2
|
[8] |
HALLS B R, HSU P S, JIANG N, et al. kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator[J]. Optica, 2017, 4(8): 897-902. DOI: 10.1364/OPTICA.4.000897
|
[9] |
LI T, PAREJA J, FUEST F, et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science, 2017, 29(1): 015206. http://cn.bing.com/academic/profile?id=0a88792b48a6b907461e1c200351ed12&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
MA L, LEI Q, IKEDA J, et al. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4575-4583. DOI: 10.1016/j.proci.2016.07.050
|
[11] |
PAREJA J, JOHCHI A, LI T, et al. A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1321-1328. https://www.researchgate.net/publication/325928590_A_study_of_the_spatial_and_temporal_evolution_of_auto-ignition_kernels_using_time-resolved_tomographic_OH-LIF
|
[12] |
FLOYD J, KEMPF A. Computed tomography of chemilumi-nescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner[J]. Proceedings of the Combustion Institute, 2011, 33(1): 751-758. DOI: 10.1016/j.proci.2010.06.015
|
[13] |
WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science, 2012, 24(2): 024013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eacaab5e4056229f8bbf3aa0987cb3c8
|
[14] |
LI X, MA L. Volumetric imaging of turbulent reactive flows at kHz based on computed tomography[J]. Optics Express, 2014, 22(4): 4768-4778. DOI: 10.1364/OE.22.004768
|
[15] |
LI X, MA L. Capabilities and limitations of 3D flame measurements based on computed tomography of chemilumi-nescence[J]. Combustion and Flame, 2015, 162(3): 642-651. DOI: 10.1016/j.combustflame.2014.08.020
|
[16] |
GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame, 2018, 196: 284-299. DOI: 10.1016/j.combustflame.2018.06.022
|
[17] |
ISHINO Y, HAYASHI N, ISHIKO Y, et al. Schlieren 3D-CT reconstruction of instantaneous density distributions of spark-ignited flame kernels of fuel-rich propane-air premixture[C]//ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME International Conference on Nanochannels, Microchannels and Minichannels, Washington D C, USA, 2016.
|
[18] |
GONZALEZ R C, WOODS R E.数字图像处理: 第3版[M].阮秋琦, 阮宇智, 译.北京: 电子工业出版社, 2017.
|
[19] |
BEST P, CHIEN P, CARANGELO R, et al. Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures[J]. Combustion and Flame, 1991, 85(3-4): 309-318. DOI: 10.1016/0010-2180(91)90136-Y
|
[20] |
MOHAMAD E J, RAHIM R A, IBRAHIM S, et al. Flame imaging using laser-based transmission tomography[J]. Sensors Actuators A: Physical, 2006, 127(2): 332-339. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210602141/
|
[21] |
EMMERMAN P, GOULARD R, SANTORO R, et al. Multiangular absorption diagnostics of a turbulent argon-methane jet[J]. Journal of Energy, 1980, 4(2): 70-77. http://cn.bing.com/academic/profile?id=1f38bba4d0cfe8a58e735c8220783a72&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
SNYDER R, HESSELINK L. Measurement of mixing fluid flows with optical tomography[J]. Optics Letters, 1988, 13(2): 87-89. http://cn.bing.com/academic/profile?id=c9ef19ab823328294b65081d589477be&encoded=0&v=paper_preview&mkt=zh-cn
|
[23] |
GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. http://cn.bing.com/academic/profile?id=6efa7336c2ab05df1af31ea2f6d51c9d&encoded=0&v=paper_preview&mkt=zh-cn
|
[24] |
BELKEBIR K, CHAUMET P C, SENTENAC A. Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography[J]. JOSA A, 2006, 23(3): 586-595. DOI: 10.1364/JOSAA.23.000586
|
[25] |
MAIRE G, DRSEK F, GIRARD J, et al. Experimental demonstration of quantitative imaging beyond Abbe's limit with optical diffraction tomography[J]. Physical Review Letters, 2009, 102(21): 213905. DOI: 10.1103/PhysRevLett.102.213905
|
[26] |
MOLINARI M, COX S J, BLOTT B H, et al. Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction[J]. Physiological Measurement, 2002, 23(1): 95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0eaac04ab17c040b076f8d3ab75cc147
|
[27] |
MOGHADDAM M, CHEW W C. Nonlinear two-dimensional velocity profile inversion using time domain data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 147-156. DOI: 10.1109/36.124225
|
[28] |
FANG W. A nonlinear image reconstruction algorithm for electrical capacitance tomography[J]. Measurement Science Technology, 2004, 15(10): 2124. DOI: 10.1088/0957-0233/15/10/023
|
[29] |
JOACHIMOWICZ N, MALLORQUI J J, BOLOMEY J C, et al. Convergence and stability assessment of Newton-Kantorovich reconstruction algorithms for microwave tomography[J]. IEEE Transactions on Medical Imaging, 1998, 17(4): 562-570. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=194dfe3ec4d6d6288a023303927eb2a6
|
[30] |
JIANG H, PAULSEN K D, OSTERBERG U L, et al. Optical image reconstruction using frequency-domain data: simulations and experiments[J]. Journal of the Optical Society of America, 1996, 13(2): 253-266. DOI: 10.1364/JOSAA.13.000253
|
[31] |
CAI W, EWING D J, MA L. Application of simulated annealing for multispectral tomography[J]. Computer Physics Communications, 2008, 179(4): 250-255. DOI: 10.1016/j.cpc.2008.02.012
|
[32] |
MA L, LI X, SANDERS S T, et al. 50 kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152-1162. DOI: 10.1364/OE.21.001152
|
[33] |
MA L, CAI W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging[J]. Applied Optics, 2008, 47(21): 3751-3759. DOI: 10.1364/AO.47.003751
|
[34] |
HSIAO C T, CHAHINE G, GUMEROV N. Application of a hybrid genetic/Powell algorithm and a boundary element method to electrical impedance tomography[J]. Journal of Computational Physics, 2001, 173(2): 433-454. https://www.sciencedirect.com/science/article/pii/S0021999101968664
|
[35] |
CORANA A, MARCHESI M, MARTINI C, et al. Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm Corrigenda for this article is available here[J]. ACM Transactions on Mathematical Soft-ware, 1987, 13(3): 262-280. DOI: 10.1145/29380.29864
|
[36] |
LEI Q, WU Y, XU W, et al. Development and validation of a reconstruction algorithm for three-dimensional nonlinear tomography problems[J]. Optics Express, 2016, 24(14): 15912-15926. DOI: 10.1364/OE.24.015912
|
[37] |
YONG Y, TIAN Q, GANG L, et al. Recent advances in flame tomography[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 389-399. DOI: 10.1016/S1004-9541(12)60402-9
|
[38] |
WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science Technology, 2012, 24(2): 024013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eacaab5e4056229f8bbf3aa0987cb3c8
|
[39] |
MOECK J P, BOURGOUIN J F, DUROX D, et al. Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames[J]. Experiments in Fluids, 2013, 54(4): 1498. DOI: 10.1007/s00348-013-1498-2
|
[40] |
SAMARASINGHE J, PELUSO S J, QUAY B D, et al. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor[J]. Journal of Engineering for Gas Turbines Power, 2016, 138(3): 031502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea86d1537856f682100b14d7675bce8f
|
[41] |
ISHINO Y, OHIWA N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame[J]. JSME International Journal Series B Fluids Thermal Engineering, 2005, 48(1): 34-40. DOI: 10.1299/jsmeb.48.34
|
[42] |
MOHRI K, GÖRS S, SCHÖLER J, et al. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385-7395. DOI: 10.1364/AO.56.007385
|
[43] |
KHADIJEH M, SIMON G, JONATHAN S, et al. Instan-taneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385-7395. DOI: 10.1364/AO.56.007385
|
[44] |
WU Y, XU W, LEI Q, et al. Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine[J]. Optics Express, 2015, 23(26): 33408-33418. DOI: 10.1364/OE.23.033408
|
[45] |
RUAN C, YU T, CHEN F, et al. Experimental characteri-zation of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence[J]. Energy, 2019, 170: 744-751. DOI: 10.1016/j.energy.2018.12.215
|
[46] |
MA L, LEI Q, WU Y, et al. From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz[J]. Combustion and Flame, 2016, 165: 1-10. DOI: 10.1016/j.combustflame.2015.08.026
|
[47] |
LIU H, SUN B, CAI W. kHz-rate volumetric flame imaging using a single camera[J]. Optics Communications, 2019, 437: 33-43. DOI: 10.1016/j.optcom.2018.12.036
|
[48] |
CAI W, KAMINSKI C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy Combustion Science, 2017, 59: 1-31. DOI: 10.1016/j.pecs.2016.11.002
|
[49] |
LIU X, WANG G, ZHENG J, et al. Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy[J]. Optics Express, 2018, 26(24): 31983-31994. DOI: 10.1364/OE.26.031983
|
[50] |
宋俊玲, 洪延姬, 王广宇.燃烧场吸收光谱断层诊断技术[M].北京: 国防工业出版社, 2014.
SONG J L, HONG Y J, WANG G Y. Combustion field absorption spectrum tomography[M]. Beijing: National Defense Industry Press, 2014.
|
[51] |
MA L, WU Y, LEI Q, et al. 3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame[J]. Combustion and Flame, 2016, 166: 66-75. DOI: 10.1016/j.combustflame.2015.12.031
|
[52] |
UNTERBERGER A, RÖDER M, GIESE A, et al. 3D instantaneous reconstruction of turbulent industrial flames using Computed Tomography of Chemiluminescence (CTC)[J]. Journal of Combustion, 2018, 5373829.
|
[53] |
WISEMAN S M, BREAR M J, GORDON R L, et al. Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames[J]. Combustion and Flame, 2017, 183: 1-14. DOI: 10.1016/j.combustflame.2017.05.003
|
[54] |
SAMARASINGHE J, PELUSO S J, QUAY B D, et al. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 031502. DOI: 10.1115/1.4031439
|
[55] |
HUANG Q X, WANG F, LIU D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J]. Combustion and Flame, 2009, 156(3): 565-573. DOI: 10.1016/j.combustflame.2009.01.001
|
[56] |
TURNS S R. An introduction to combustion[M]. New York: McGraw-Hill College, 1996.
|
[57] |
HOSSAIN M M, LU G, SUN D, et al. Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques[J]. Measurement Science Technology, 2013, 24(7): 074010. DOI: 10.1088/0957-0233/24/7/074010
|
[58] |
STASIO S D, MASSOLI P. Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry[J]. Measurement Science Technology, 1994, 5(12): 1453. DOI: 10.1088/0957-0233/5/12/006
|
[59] |
HOSSAIN M M, LU G, YAN Y. Soot volume fraction profiling of asymmetric diffusion flames through tomographic imaging[C]//Proceeding of IEEE International Conference on Imaging Systems and Techniques (IST). 2014.
|
[60] |
KOHSE-HÖINGHAUS K, JEFFRIES J B. Applied combustion diagnostics[M]. New York: Taylor and Francis, 2002.
|
[61] |
刘晶儒, 赵新艳, 叶锡生, 等.激光光谱技术在燃烧流场诊断中的应用[J].光学精密工程, 2011, 19(2): 284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201102010
LIU J R, ZHAO X Y, YE X S, et al. Application of laser spectroscopy in combustion flow field diagnosis[J]. Optics and Precision Engineering, 2011, 19(2): 284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201102010
|
[62] |
MILLER J D, PELTIER S J, SLIPCHENKO M N, et al. Investigation of transient ignition processes in a model scramjet pilot cavity using simultaneous 100 kHz formaldehyde planar laser-induced fluorescence and CH* chemiluminescence imaging[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2865-2872. DOI: 10.1016/j.proci.2016.07.060
|
[63] |
MA L, LEI Q, CAPIL T, et al. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames[J]. Optics Letters, 2017, 42(2): 267-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca98f196882ef5eba0edf9835c3e9bb1
|
[64] |
HALLS B R, THUL D J, MICHAELIS D, et al. Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet[J]. Optics Express, 2016, 24(9): 10040-10049. DOI: 10.1364/OE.24.010040
|
[65] |
HALLS B R, HSU P, ROY S, et al. Two-color volumetric laser-induced fluorescence for 3D OH and temperature fields in turbulent reacting flows[J]. Optics Letters, 2018, 43(12): 2961-2964. DOI: 10.1364/OL.43.002961
|
[66] |
SCHWARZ A. Multi-tomographic flame analysis with a schlieren apparatus[J]. Measurement Science Technology, 1996, 7(3): 406. DOI: 10.1088/0957-0233/7/3/023
|
[67] |
SETTLES G S, HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science Technology, 2017, 28(4): 042001. DOI: 10.1088/1361-6501/aa5748
|
[68] |
ISHINO Y, HAYASHI N, RAZAK I F B A, et al. 3D-CT (computer tomography) measurement of an instantaneous density distribution of turbulent flames with a multi-directional quantitative schlieren camera (reconstructions of high-speed premixed burner flames with different flow velocities)[J]. Flow, Turbulence Combustion, 2016, 96: 819-835. DOI: 10.1007/s10494-015-9658-5
|
[69] |
KLINNER J, WILLERT C. Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions[J]. Experiments in Fluids, 2012, 53(2): 531-543. DOI: 10.1007/s00348-012-1308-2
|
[70] |
UPTON T, VERHOEVEN D, HUDGINS D. High-resolution computed tomography of a turbulent reacting flow[J]. Experiments in Fluids, 2011, 50(1): 125-134. DOI: 10.1007/s00348-010-0900-6
|
[71] |
NICOLAS F, TODOROFF V, PLYER A, et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements[J]. Experiments in Fluids, 2016, 57(1): 13. DOI: 10.1007/s00348-015-2100-x
|
[72] |
HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875, R2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112019005457
|
1. |
胡炜,李敬轩,杨立军,张玥,梁炫烨. 不完全角度背景纹影层析测量综述. 火箭推进. 2024(06): 1-26 .
![]() | |
2. |
冯晓鸥,金熠,翟超. 化学发光火焰三维重建研究综述. 实验流体力学. 2023(02): 1-15 .
![]() | |
3. |
李响,雷庆春,徐文江,范玮. 基于计算层析成像的火焰三维重建算法研究. 燃烧科学与技术. 2023(06): 660-666 .
![]() | |
4. |
管今哥,卫娜瑛,郑永秋,陈坤. 基于同步共轴结构的辐射层析测温仪设计. 仪器仪表学报. 2023(09): 239-247 .
![]() | |
5. |
娄春,张鲁栋,蒲旸,张仲侬,李智聪,陈鹏飞. 基于自发辐射分析的被动式燃烧诊断技术研究进展. 实验流体力学. 2021(01): 1-17 .
![]() |