FU Junquan, SHI Zhiwei, CHEN Jie, ZHOU Mengbei, WU Dawei, PAN Lijun. Departure characteristics of blended-wing-body aircraft[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 32-37. DOI: 10.11729/syltlx20190110
Citation: FU Junquan, SHI Zhiwei, CHEN Jie, ZHOU Mengbei, WU Dawei, PAN Lijun. Departure characteristics of blended-wing-body aircraft[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 32-37. DOI: 10.11729/syltlx20190110

Departure characteristics of blended-wing-body aircraft

More Information
  • Received Date: September 09, 2019
  • Revised Date: November 10, 2019
  • Static force measurements of blended-wing-body aircraft at high angles of attack were carried out in the 1 m low speed wind tunnel of Nanjing University of Aeronautics and Astronautics. By fully mining and analyzing the experimental results, the approximate initial departure angle of attack and departure region of BWB aircraft are obtained by using multiple criteria, including the static stability derivative, the dynamic directional stability parameter, the lateral control departure parameter and the Weissman chart. Besides, the spin sensitive region of BWB aircraft is predicted. At the same time, the departure is simulated by the virtual flight test in wind tunnel. The results show that the lateral stability of BWB aircraft is poor, and the non-command roll motion may occur at a very small angle of attack, which is also the main reason for the divergence of the departure. And the departure characteristics obtained from the virtual flight test and these stability criteria are in good consistency, which verifies the reliability of the virtual flight test in departure characteristics research.
  • [1]
    AMMAR S, LEGROS C, TRÉPANIER J-Y. Conceptual design, performance and stability analysis of a 200 passengers Blended Wing Body aircraft[J]. Aerospace Science and Technology, 2017, 71:325-336. DOI: 10.1016/j.ast.2017.09.037
    [2]
    ORDOUKHANIAN E, MADNI A M. Blended Wing Body architecting and design:current status and future prospects[J]. Procedia Computer Science, 2014, 28:619-625. DOI: 10.1016/j.procs.2014.03.075
    [3]
    朱自强, 王晓璐, 吴宗成, 等.民机的一种新型布局形式:翼身融合体飞机[J].航空学报, 2008, 29(1):49-59. DOI: 10.3321/j.issn:1000-6893.2008.01.007

    ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):49-59. DOI: 10.3321/j.issn:1000-6893.2008.01.007
    [4]
    付军泉, 史志伟, 周梦贝, 等.一种翼身融合飞行器的失速特性研究[J].航空学报, 2020, 41(1):123176. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202001005.htm

    FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123176. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202001005.htm
    [5]
    QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6):321-343. DOI: 10.1016/j.paerosci.2004.08.001
    [6]
    LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4):508-516. DOI: 10.1016/S1000-9361(11)60414-7
    [7]
    LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617. DOI: 10.2514/1.C032491
    [8]
    LARKIN G, COATES G. A design analysis of vertical stabilisers for Blended Wing Body aircraft[J]. Aerospace Science and Technology, 2017, 64:237-252. DOI: 10.1016/j.ast.2017.02.001
    [9]
    JOHNSTON D E, HOGGE J R. Nonsymmetric flight influence on high-angle-of-attack handling and departure[J]. Journal of Aircraft, 1976, 13(2):112-118. DOI: 10.2514/3.58639
    [10]
    马军, 宋晋, 刘蓓, 等.立式风洞全视场尾旋姿态测量技术研究[J].实验流体力学, 2016, 30(6):66-70, 104. http://www.syltlx.com/CN/abstract/abstract10982.shtml

    MA J, SONG J, LIU B, et al. Design and implementation for full field of view measurement scheme in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):66-70, 104. http://www.syltlx.com/CN/abstract/abstract10982.shtml
    [11]
    杨文, 卜忱, 眭建军.某复杂构型飞机偏航-滚转耦合运动非定常气动力特性实验研究[J].实验流体力学, 2016, 30(3):61-65. http://www.syltlx.com/CN/abstract/abstract10935.shtml

    YANG W, BU C, SUI J J. Investigation of the unsteady aerodynamic characteristics of a fighter with complex configuration undergoing yaw-roll coupling oscillation motion[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):61-65. http://www.syltlx.com/CN/abstract/abstract10935.shtml
    [12]
    许光明.飞机失速/偏离问题研究的技术途径[J].气动实验与测量控制, 1990, 4(3):1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199003000.htm

    XU G M. The technical approaches to investigation of stall/departure problems of aircraft[J]. Aerodynamic experiment and measurement & control, 1990, 4(3):1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199003000.htm
    [13]
    张洪.飞机大迎角飞行稳定性判据分析[J].航空学报, 1988, 9(10):B502-505. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198810012.htm

    ZHANG H. Flight stability criteria analysis of aircraft at high angles-of-attack[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(10):B502-505. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198810012.htm
    [14]
    李树有, 王启, 张培田.飞机失速/尾旋特性的预测和试验研究[J].飞行力学, 2000, 18(3):42-45. DOI: 10.3969/j.issn.1002-0853.2000.03.011

    LI S Y, WANG Q, ZHANG P T. Prediction and test of aircraft stall/spin characteristics[J]. Flight Dynamics, 2000, 18(3):42-45. DOI: 10.3969/j.issn.1002-0853.2000.03.011
    [15]
    李永富.用风洞技术预测飞机的失速/尾旋特性[J].航空与航天, 2004(4):12-15, 18.
    [16]
    耿玺, 史志伟.面向过失速机动的风洞动态试验相似准则探讨[J].实验流体力学, 2011, 25(3):41-45. DOI: 10.3969/j.issn.1672-9897.2011.03.010

    GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):41-45. DOI: 10.3969/j.issn.1672-9897.2011.03.010
    [17]
    郭林亮, 祝明红, 傅澔, 等.水平风洞中开展飞机尾旋特性研究的理论分析[J].航空学报, 2018, 39(6):79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201806008.htm

    GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201806008.htm
    [18]
    LUTZE F H, DURHAM W C, MASON W H. Unified development of lateral-directional departure criteria[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(2):489-493. DOI: 10.2514/3.21644
    [19]
    MENGALI G, GIULIETTI F. Unified algebraic approach to approximation of lateral-directional modes and departure criteria[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4):724-728. DOI: 10.2514/1.6606
    [20]
    Tinger H L. Departure resistance and spin characteristics of the F-15 S/MTD[R]. AIAA-89-0012, 1989.
    [21]
    ARAUJO-ESTRADA S A, LOWENBERG M H, NEILD S, et al. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig[R]. AIAA 2015-0750, 2015.
    [22]
    LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[R]. AIAA 2002-0168, 2002.
  • Cited by

    Periodical cited type(4)

    1. 吕达,张维桐,张鲁民,赵俊波,张石玉,苏浩秦. 面对称无尾高超声速飞行器三通道耦合失稳判据. 空气动力学学报. 2023(07): 74-83 .
    2. 王延灵,冯帅,卜忱,沈彦杰,陈昊,芦士光. 基于虚拟飞行的混合翼身融合布局操稳特性. 北京航空航天大学学报. 2023(09): 2337-2344 .
    3. 张子军,赵彤,孙烨,李宏信. 飞机大迎角飞行问题研究综述. 航空工程进展. 2022(03): 74-85 .
    4. 骞恒浩,石鹏飞,王敏文,王跃萍. 基于自抗扰的翼身融合客机控制器设计. 兵工自动化. 2022(10): 26-31 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (580) PDF downloads (44) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close