Yu Tao, Zhang Wei, Zhang Yifeng, Chen jiufen, Chen Jianqiang, Wu Jie. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 70-75. DOI: 10.11729/syltlx20190076
Citation: Yu Tao, Zhang Wei, Zhang Yifeng, Chen jiufen, Chen Jianqiang, Wu Jie. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 70-75. DOI: 10.11729/syltlx20190076

Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer

More Information
  • Received Date: May 21, 2019
  • Revised Date: September 02, 2019
  • The wind tunnel experiment is one of the most important methods to conduct the hypersonic boundary-layer transition research. However, the experimental technology that can be used for three-dimensional hypersonic boundary-layer measurement is still extremely lacking, and the dynamic response of the existing measurement technology is quite restricted. In order to solve the above problems, a non-instrusive Focused Laser Differential Interferometry (FLDI) measurement system is set up based on the light refraction and interference principle and it can effectively measure the density disturbance of the flow field at spatial points. A hypersonic laminar/turbulent boundary-layer transition experiment was carried out on a 7° half angle sharp cone model in a conventional Mach 8 hypersonic wind tunnel with FLDI being the main diagnostic. The results show that FLDI successfully captures the second mode instability wave at 327 kHz and its 645 kHz harmonics. In comparison with PCB test results, FLDI has the advantages of high Signal to Noise Ratio, high dynamic response and high spatial resolution (less than 1 mm along the flow direction). Considering its excellent characteristics such as high spatial and temporal resolution, FLDI can be used as a promising diagnostic for the hypersonic boundary-layer transition and receptivity study.
  • [1]
    刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-211. DOI: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experi-ment in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-211. DOI: 10.7638/kqdlxxb-2018.0017
    [2]
    Lin T C. Influence of laminar boundary-layer transition on entry vehicle designs[J]. Journal of Spacecraft and Rockets, 2008, 45(2):165-175. DOI: 10.2514/1.30047
    [3]
    Smeets G, George A. Gas-dynamic investigations in a shock tube using a highly sensitive interferometer[R]. No. REPT-14/71, 1973.
    [4]
    Smeets G. Laser interferometer for high sensitivity measure-ments on transient phase objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 1972, AES-8(2):186-190. DOI: 10.1109/TAES.1972.309488
    [5]
    Smeets G, George A. Laser-differential interferometer applica-tions in gas dynamics[R]. No. REPT-28/73, 1996.
    [6]
    Smeets G. Flow diagnostics by laser interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(2):82-90. DOI: 10.1109/TAES.1977.308441
    [7]
    Parziale N J, Shepherd J E, Hornung H G. Differential interferometric measurement of instability at two points in a hypervelocity boundary layer[R]. AIAA-2013-0521, 2013.
    [8]
    Parziale N J, Shepherd J E, Hornung H G. Differential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal, 2013, 51(3):750-754. DOI: 10.2514/1.J052013
    [9]
    Parziale N J, Shepherd J E, Hornung H G. Observations of hypervelocity boundary-layer instability[J]. Journal of Fluid Mechanics, 2015, 781:87-112. DOI: 10.1017/jfm.2015.489
    [10]
    Parziale N J, Shepherd J E, Hornung H G. Free-stream density perturbations in a reflected-shock tunnel[J]. Experiments in Fluids, 2014, 55(2):1665. DOI: 10.1007/s00348-014-1665-0
    [11]
    Parziale N J, Shepherd J E, Hornung H G. Reflected shock tunnel noise measurement by focused differential interferometry[R]. AIAA-2012-3261, 2012.
    [12]
    Fulghum M R. Turbulence measurements in high-speed wind tunnels using focusing laser differential interferometry[D]. State College: The Pennsylvania State University, 2014.
    [13]
    Schmidt B E, Shepherd J E. Analysis of focused laser diffe-rential interferometry[J]. Applied optics, 2015, 54(28):8459-8472. DOI: 10.1364/AO.54.008459
    [14]
    Jewell J S, Parziale N J, Lam K L, et al. Disturbance and phase speed measurements for shock tubes and hypersonic boundary-layer instability[R]. AIAA-2016-3112, 2016.
    [15]
    Settles G S, Fulghum M R. The focusing laser differential interferometer, an instrument for localized turbulence measure-ments in refractive flows[J]. Journal of Fluids Engineering, 2016, 138(10):101402. DOI: 10.1115/1.4033960
    [16]
    Kine S J, McClintock F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75:3-8.
    [17]
    Beckwith T G, Marangoni R D, Lienhard J H V. Mechanical measurements[M]. Upper Saddle River:Pearson-Prentice Hall, 2007.
  • Cited by

    Periodical cited type(8)

    1. 李存标,史明涛. 从现代实验技术的发展和数据处理方法的应用到科学发现. 气动研究与试验. 2023(04): 31-51 .
    2. 李强,万兵兵,杨凯,朱涛. 高超声速尖锥边界层压力脉动和热流脉动特性试验. 航空学报. 2022(02): 240-248 .
    3. 刘是成,姜应磊,董昊. 高超声速圆锥边界层不稳定性及转捩实验研究. 实验流体力学. 2022(02): 122-130 . 本站查看
    4. 熊有德,余涛,薛涛,吴杰. 聚焦激光差分干涉法测量超/高超声速流动的进展. 实验流体力学. 2022(02): 9-20 . 本站查看
    5. 郭栋梁,侯超,朱臣,熊文楠,陈爽,许晓斌,杨华,黄永安. 飞行器表面气动载荷的柔性智能蒙皮多参量测量. 实验流体力学. 2022(02): 146-154 . 本站查看
    6. 刘姝怡,陈坚强,袁先旭,熊有德,吴杰. 6°攻角尖锥高超声速边界层高频不稳定波实验研究. 实验流体力学. 2021(06): 1-7 . 本站查看
    7. 袁湘江,沙心国,时晓天,高军. 高超声速流动中噪声与湍流度的关系. 航空学报. 2020(11): 224-232 .
    8. 杨凯,朱涛,王雄,陶伯万,朱新新,王辉,杨庆涛. 原子层热电堆热流传感器研制及其性能测试. 实验流体力学. 2020(06): 86-91 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (321) PDF downloads (31) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close