ZHANG Zhao, LIN Jun, TAO Yang, GUO Qiuting, ZUO Jin, LU Bo. Investigation on target jet mill based on the entrainment of the annular supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 103-108. DOI: 10.11729/syltlx20180200
Citation: ZHANG Zhao, LIN Jun, TAO Yang, GUO Qiuting, ZUO Jin, LU Bo. Investigation on target jet mill based on the entrainment of the annular supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 103-108. DOI: 10.11729/syltlx20180200

Investigation on target jet mill based on the entrainment of the annular supersonic flow

More Information
  • Received Date: December 20, 2018
  • Revised Date: May 05, 2019
  • The jet mill widely used in many industrial fields is a kind of apparatus to produce superfine powder. A new supersonic jet mill, whose design is based on numerical simulations and collision experiments, is presented and manufactured. In our design an annular supersonic flow produced by an annular converging-diverging nozzle is used to entrain the central subsonic flow with particles. After the supersonic flow's entrainment, the particle beam concentrated in the flow center impacts on the target accurately with a great kinetic energy. The multiphase numerical studies show that the collision speed of particles of 25 μm to 1 μm in diameter can reach 440 m/s to 530 m/s approximately in the entrainment of the supersonic flow with the Mach number of 3.0 and the total pressure of 1.5 MPa, and particles can precisely collide on the target. The collision experiments implemented in the new-made jet mill manifest the huge collision energy and the precise supersonic collision in the jet mill by the target erosion and the iron particles size reduction.
  • [1]
    BERTHIAUX H, DODDS J. Modelling fine grinding in a fluidized bed opposed jet mill: Part I: Batch grinding kinetics[J]. Powder Technology, 1999, 106(1-2): 78-87. DOI: 10.1016/S0032-5910(99)00049-2
    [2]
    MIDOUX N, HOŠEK P, PAILLERES L, et al. Micronization of pharmaceutical substances in a spiral jet mill[J]. Powder Technology, 1999, 104(2): 113-120. DOI: 10.1016/S0032-5910(99)00052-2
    [3]
    HIROAKI M, KO H, HIDETO Y. Powder technology handbook[M]. 3rd ed. Boca Raton: CRC Press, 2006.
    [4]
    TASIRIN S M, GELDART D. Experimental investigation on fluidized bed jet grinding[J]. Powder Technology, 1999, 105(1-3): 337-341. DOI: 10.1016/S0032-5910(99)00156-4
    [5]
    NAKACH M, AUTHELIN J R, CHAMAYOU A, et al. Comparison of various milling technologies for grinding pharmaceutical powders[J]. International Journal of Mineral Processing, 2004, 74(S): S173-S181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80f601f866356b302780bebdf0ba9d85
    [6]
    CHAMAYOU A, DODDS J A. Air jet milling[M]//Salman A D, Ghadiri M, Hounslow M J. Handbook of Powder Technology: vol 12. Amsterdam: Elsevier, 2007: 421-435.
    [7]
    GHAMBARI M, SHAIBANI M E, ESHRAGHI N. Produc-tion of grey cast iron powder via target jet milling[J]. Powder Technology, 2012, 221: 318-324. DOI: 10.1016/j.powtec.2012.01.020
    [8]
    LEVY A, KALMAN H. Numerical study of particle motion in jet milling[J]. Particulate Science and Technology, 2007, 25(2): 197-204. DOI: 10.1080/02726350701257618
    [9]
    RAJESWARI M S R, AZIZLI K A M, HASHIM S F S. CFD simulation and experimental analysis of flow dynamics and grinding performance of opposed fluidized bed air jet mill[J]. International Journal of Mineral Processing, 2011, 98(1-2): 94-105. DOI: 10.1016/j.minpro.2010.10.012
    [10]
    RODNIANSKI V, KRAKAUER N, DARWESH K, et al. Aerodynamic classification in a spiral jet mill[J]. Powder Technology, 2013, 243: 110-119. DOI: 10.1016/j.powtec.2013.03.018
    [11]
    ESKIN D, VOROPAYEV S, VASILKOV O. Simulation of jet milling[J]. Powder Technology, 1999, 105(1-3): 257-265. DOI: 10.1016/S0032-5910(99)00146-1
    [12]
    DOGBE S, GHADIRI M, HASSANPOUR A, et al. Fluid-particle energy transfer in spiral jet mill[J]. Powders and Grains, 2017, 140: 09040. https://www.researchgate.net/publication/318070564_Fluid-particle_energy_transfer_in_spiral_jet_milling
    [13]
    WHITE F M. Fluid mechanics[M]. 4th ed. New York: McGraw-Hill Press, 2005.
    [14]
    SAFFMAN P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 1965, 22(2): 385-400. DOI: 10.1017/S0022112065000824
    [15]
    WU W J, GIESE R F J, VAN OSS C J. Change in surface properties of solids caused by grinding[J]. Powder Technology, 1996, 89(2): 129-132. DOI: 10.1016/S0032-5910(96)03158-0
    [16]
    XIAO Z L, CHEN Q Y, YIN Z L, et al. Calorimetric investigation of mechanically activated storage energy mechanism of sphalerite and pyrite[J]. Thermochimica Acta, 2005, 436(1-2): 10-14. DOI: 10.1016/j.tca.2005.06.042
    [17]
    CROWE C T. Review-numerical models for dilute gas-particle flows[J]. Journal of Fluids Engineering, 1982, 104(3): 297-303. DOI: 10.1115/1.3241835
    [18]
    ZHOU L X. Theory and numerical modeling of turbulent gas-particles flows and combustion[M]. Beijing: Science press and Florida: CRC press, 1993.

Catalog

    Article Metrics

    Article views (221) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close