Yan Bo, Li Meng, Chen Li, Chen Shuang, Wu Yungang, Yang Furong, Mu Jinhe. Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27-32. DOI: 10.11729/syltlx20180168
Citation: Yan Bo, Li Meng, Chen Li, Chen Shuang, Wu Yungang, Yang Furong, Mu Jinhe. Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27-32. DOI: 10.11729/syltlx20180168

Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology

More Information
  • Received Date: November 13, 2018
  • Revised Date: February 18, 2019
  • In order to explore the temperature measuring ability under the high-pressure condition and in a confined space, the filtered Rayleigh scattering technique is developed based on the iodine molecular ultrafine absorption. The filtered Rayleigh scattering temperature measuring apparatus, consisted of the seed laser, the Nd:YAG laser, the iodine molecule filter and the ICCD camera, is designed. And the iodine filter is used to remove the stray light interference from the soot and wall reflection. Moreover, this apparatus is applied on a high-pressure gas combustor (0.1~0.5MPa) to obtain the temperature distribution above the flat burner quantitatively. The results show that the relative uncertainty in the single-shot imaging is estimated to be about 15%. And a better than 10% agreement to the single point measurement is achieved by the thermocouple. Therefore, the filtered Rayleigh scattering technique is expected to be applied in the temperature measurement of the engine combustion.
  • [1]
    Liu J R, Hu Z Y, Zhang Z R. Laser spectroscopy applied to combustion diagnostics[J]. Optics and Precision Engineering, 2011, 19(2):284-296. DOI: 10.3788/OPE.20111902.0284
    [2]
    Fourguette D C, Zurni R M, Long M B. Two dimensional Rayleigh thermometry in a turbulent nonpremixed Methane-Hydrogen flame[J]. Combustion Science Technology, 1986, 44(30):307-317. DOI: 10.1080-00102208608960310/
    [3]
    俞刚, 范学军.超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5):449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001

    Yu G, Fan X J. Supersonic combustion and hypersonic propul-sion[J]. Progress in Mechanics, 2013, 43(5):449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001
    [4]
    McMillin B K, Palmer J L, Seitzman J M, et al. Two line instantaneous temperature imaging of NO in a scramjet model flow-field[R]. AIAA-93-0044, 1993.
    [5]
    Seitzman J M, Palmer J L, Antonio A L. Instantaneous planar thermometry of shock-heated flows using PLIF of OH[R]. AIAA-93-0802, 1993.
    [6]
    Elliott G S, Glumac N. Molecular filtered Rayleigh scattering applied to combustion turbulence[R]. AIAA-99-0643, 1999.
    [7]
    Elliott G S, Glumac N, Carter C D. Molecular filtered Rayleigh scattering applied to combustion[J]. Measurement Science and Technology, 2001, 12(4):452-466. DOI: 10.1088/0957-0233/12/4/309
    [8]
    Miles R B, Lempert W R. Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering[J]. Applied Physics B, 1990, 51(4):1-7. DOI: 10.1007/BF00332317
    [9]
    Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths[J]. Applied Optics, 1997, 36(27):6729-6738. DOI: 10.1364/AO.36.006729
    [10]
    Hoffman D, Munch K U, Leipertz A. Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering[J]. Opt Lett, 1996, 21(7):525-527. DOI: 10.1364/OL.21.000525
    [11]
    Doll U, Fischer M, Stockhausen G, et al. Frequency scanning filtered Rayleigh scattering in combustion experiments[C]//Proc of the 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2012.
    [12]
    Doll U, Stockhausen G, Willert C. Pressure, temperature, and three-component velocity fields by filtered Rayleigh scattering velocimetry[J]. Optical Letter, 2017, 42(19):3773-3776. DOI: 10.1364/OL.42.003773
    [13]
    Schroll M, Doll U, Stockhausen G, et al. Flow field characterization at the outlet of a lean burn single-sector combustor by laser-optical methods[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(6):011503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3563e908fdf24b72e33bde6ff0a76bc4
    [14]
    王晟, 刘晶儒, 胡志云, 等.用于燃烧场诊断的分子滤波瑞利散射技术[J].光学精密工程, 2011, 19(2):445-461. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102032

    Wang S, Liu J R, Hu Z Y, et al. Development of filtered Rayleigh scattering for combustion diagnostic application[J]. Optics and Precision Engineering, 2011, 19(2):445-461. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102032
    [15]
    郑尧邦, 陈力, 苏铁, 等.滤波瑞利散射测温技术研究[C]//中国空气动力学会测控技术专委会学术交流会论文集. 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8056120

    Zheng Y B, Chen L, Su T, et al. Study on the temperature measurement by filtered ray-leigh scattering[C]//Proc of Academic Exchange Meeting of China Aerodynamic Society Measurement and Control Technical Committee. 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8056120
    [16]
    Tenti G, Boley C D, Desai R C. On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(2):285-290.
    [17]
    Pan X, Shneider M N, Miles R B. Coherent Rayleigh-Brillouin scattering in molecular gases[J]. Physical Review A, 2004, 69(3):33814-33822. DOI: 10.1103/PhysRevA.69.033814
  • Related Articles

    [1]LI Jing, YANG Dong, LI Mei, HOU Keyong. Progress in complex combustion field diagnostics based on on-line mass spectrometry technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145
    [2]ZHANG Su, PANG Ran, JIANG Lihong, LI Da, LI Chengyu, ZHANG Hongjie. A temperature measurement technique based on fluorescence intensity ratio of rare earth Dy ion[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 115-124. DOI: 10.11729/syltlx20210176
    [3]CHEN Aiguo, TIAN Ying, WANG Jie, YANG Yanguang, LI Zhihui, LI Zhonghua, LI Zhenqian. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20210192
    [4]WU Taofeng, LUAN Yinsen, SHI Shengxian. Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 75-82. DOI: 10.11729/syltlx20200092
    [5]SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. DOI: 10.11729/syltlx20190135
    [6]Song Wenyan, Shi Deyong, Wang Yuhang. Investigation of the flame stabilization mechanism of the hydrocarbon fuel in the supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 42-49. DOI: 10.11729/syltlx20180017
    [7]Wang Genjuan, Yang Zangjian, Meng Sheng, Wang Mingxiao, Zhong Yingjie. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 103-110. DOI: 10.11729/syltlx20150083
    [8]Meng Sheng, Yang Zangjian, Wang Mingxiao, Shen Zhongliang, Deng Kai, Zhong Yingjie. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, (4): 65-69. DOI: 10.11729/syltlx20140117
    [9]Tao Bo, Wang Sheng, Hu Zhiyun, Zhang Lirong, Zhang Zhenrong, Ye Xisheng. TDLAS 技术二次谐波法测量发动机温度[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 68-72. DOI: 10.11729/syltlx20140053
    [10]LI Fei, YU Xi-long, CHEN Li-hong, ZHANG Xin-yu. Temperature and water vapor concentration measurements of CH4/Air premixed flat flame based on TDLAS[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 40-44. DOI: 10.3969/j.issn.1672-9897.2009.02.009
  • Cited by

    Periodical cited type(3)

    1. 赵波,黄知龙,陈吉明,廖达雄,裴海涛. 大型连续式高速风洞热交换器设计关键技术研究. 实验流体力学. 2022(05): 16-23 . 本站查看
    2. 张壮,游永华,王盛,邵坤,易正明,袁泉. 车载板翅式油冷却器的实验研究. 热科学与技术. 2022(06): 565-571 .
    3. 陈彦. 密闭环境换热装置设计及性能研究. 内燃机与配件. 2021(12): 79-81 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (258) PDF downloads (21) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close