Zhu Guangsheng, Nie Chunsheng, Cao Zhanwei, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 1-10. doi: 10.11729/syltlx20180137
Citation: Zhu Guangsheng, Nie Chunsheng, Cao Zhanwei, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 1-10. doi: 10.11729/syltlx20180137

Research progress of aerodynamic thermal environment test and measurement technology

doi: 10.11729/syltlx20180137
  • Received Date: 2018-10-09
  • Rev Recd Date: 2019-01-13
  • Publish Date: 2019-04-25
  • Ground wind tunnel tests and flight tests are the primary means of obtaining pneumatic heating data. In this paper, the development of the domestic hypersonic aerodynamic test and the heat flux measurement technology is analyzed and discussed. Firstly, the shape characteristics, the flight profile, the boundary layer transition and the aerodynamic thermal environment characteristics of the adjacent space hypersonic vehicles are analyzed. On this basis, the wind tunnel test simulation theory of the aerodynamic thermal environment is analyzed, and the domestic application for aerodynamic thermal measurement, wind tunnel test equipment and its simulation capability are introduced, focusing on the analysis of the development and trend of wind tunnel aerodynamic thermal environment measurement technology, including point measurement technology based on sensor measurement and non-contact measurement technology such as phosphorescence heat map technology and infrared heat map technology. Finally, the measurement principle and engineering application of the "built-in" and "embedded" measure-ment technologies are introduced for the flight test thermal environment measurement. The problems faced by the flight test aerodynamic thermal environment measurement are discussed. Both further research and present problems for thermal environment measurement technologies are proposed.
  • loading
  • [1]
    蔡巧言, 杜涛, 朱广生.新型高超声速飞行器的气动设计技术探讨[J].宇航学报, 2009, 30(6):2086-2091. doi: 10.3873/j.issn.1000-1328.2009.06.006

    Cai Q Y, Du T, Zhu G S. The aerodynamic design technology for new type hypersonic vehicle[J]. Journal of Astronautics, 2009, 30(6):2086-2091. doi: 10.3873/j.issn.1000-1328.2009.06.006
    [2]
    Johnson C B; Kaufman L G Ⅲ. High speed interference heating loads and pressure distributions resulting from elevon deflections(shock wave interaction effects on hypersonic aircraft surfaces)[C]//Proc of the 17th Aerospace Sciences Meeting. 1979.
    [3]
    Schuricht P H. Roberts G T. Hypersonic interference heating induced by a blunt fin[C]//Proc of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 1998.
    [4]
    潘宏禄, 李俊红, 张学军.突起物及其干扰区热环境影响范围分析[J].计算物理, 2013, 30(6):825-832. doi: 10.3969/j.issn.1001-246X.2013.06.005

    Pan H L, Li J H, Zhang X J. Analysis on thermal environment of interaction region around protuberance in high speed flows[J]. Chinese Journal of Computational Physics, 2013, 30(6):825-832. doi: 10.3969/j.issn.1001-246X.2013.06.005
    [5]
    周佳.高超声速飞行器钝舵缝隙气动热环境研究[D].绵阳: 西南科技大学, 2017.

    Zhou J. Study of aerodynamic heating environment on blunt-fin gap of hypersonic vehicle[D]. Mianyang: Southwest University of Science and Technology, 2017.
    [6]
    董维中, 高铁锁, 丁明松, 等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025

    Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025
    [7]
    董维中, 丁明松, 高铁锁, 等.热化学非平衡模型和表面温度对气动热计算影响分析[J].空气动力学学报, 2013, 31(6):692-698. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201306002

    Dong W Z, Ding M S, Gao T S, et al. The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate[J]. Acta Aerodynamica Sinica, 2013, 31(6):692-698. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201306002
    [8]
    丁明松, 董维中, 高铁锁, 等.局部催化特性差异对气动热环境影响的计算分析[J].航空学报, 2018, 39(3):44-54. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005

    Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):44-54. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005
    [9]
    王庆洋, 丛堃林, 刘丽丽, 等.临近空间高超声速飞行器气动力及气动热研究现状[J].气体物理, 2017, 2(4):46-55. http://d.old.wanfangdata.com.cn/Periodical/qtwl201704005

    Wang Q Y, Cong K L, Liu L L, et al. Research status on aerodynamic force and heat of near space hypersonic flight vehicle[J]. Physics of Gases, 2017, 2(4):46-55. http://d.old.wanfangdata.com.cn/Periodical/qtwl201704005
    [10]
    王智慧, 鲍麟, 童秉纲.尖化前缘的稀薄气体化学非平衡流动和气动加热相似律研究[J].气体物理, 2016, 1(1):5-12.

    Wang Z H, Bao L, Tong B G. Similarity law of aero-heating to sharpened noses in rarefiedchemical nonequilibrium flows[J]. Physics of Gases, 2016, 1(1):5-12.
    [11]
    余平, 段毅, 尘军.高超声速飞行的若干气动问题[J].航空学报, 2015, 36(1):7-23. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501003

    Yu P, Duan Y, Chen J, Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501003
    [12]
    国义军, 曾磊, 张昊元, 等. HTV2第二次飞行试验气动热环境及失效模式分析[J].空气动力学学报, 2017, 35(4):496-503. doi: 10.7638/kqdlxxb-2016.0114

    Guo Y J, Zeng L, Zhang H Y, et al. Investigation on aerothermodynamic environment and ablation which lead to HTV-2 second fight test failing[J]. Acta Aerodynamica Sinica, 2017, 35(4):496-503. doi: 10.7638/kqdlxxb-2016.0114
    [13]
    任思根.实验空气动力学[M].北京:宇航出版社, 1996.
    [14]
    彭治雨, 石义雷, 龚红明, 等.高超声速气动热预测技术及发展趋势[J].航空学报, 2015, 36(1):325-345. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501026

    Peng Z Y, Shi Y L, Gong H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501026
    [15]
    涂建强, 刘德英, 陈海群.长时间隔热材料环境的稳态热流测量方法[J].宇航材料工艺, 2008, 38(2):76-80. doi: 10.3969/j.issn.1007-2330.2008.02.020

    Tu J Q, Liu D Y, Chen H Q. Steady-state heat-flux measurement method for environment of long-time insulation materials[J]. Aerospace materials & technology, 2008, 38(2):76-80. doi: 10.3969/j.issn.1007-2330.2008.02.020
    [16]
    李强, 刘济春, 孔荣宗.耐冲刷薄膜铂电阻热流传感器研制[J].电子测量与仪器学报, 2017, 31(4):623-629. http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201704022

    Li Q, Liu J C, Kong R Z. Development of anti-erosion platinum thin film resistance thermal sensor[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(4):623-629. http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201704022
    [17]
    秦峰, 何川, 曾磊, 等.驻点热流测量试验技术研究[J].西南交通大学学报, 2013, 48(6):1072-1077. doi: 10.3969/j.issn.0258-2724.2013.06.016

    Qin F, He C, Zeng L, et al. Experimental research of heat-transfer measurements on stagnation points[J]. Journal of Southwest Jiaotong University, 2013, 48(6):1072-1077. doi: 10.3969/j.issn.0258-2724.2013.06.016
    [18]
    陈星.尖化前缘热环境实验技术研究[D].长沙: 国防科技大学, 2011.

    Chen X. Experimental technique study of heat transfer mea-surement on sharp leading edges[D]. Changsha: National University of Defense Technology, 2011.
    [19]
    王兴虎.同轴热电偶的响应特性分析与实验研究[D].北京: 中国科学院大学, 2018.

    Wang X H. Analysis of response characteristics and experimental research of coaxial thermocouple[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [20]
    毕志献, 韩曙光, 伍超华, 等.磷光热图测热技术研究[J].实验流体力学, 2013, 27(3):87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017

    Bi Z X, Han S G, Wu C H, et al. Phosphor thermography study in gun tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017
    [21]
    张扣立, 周嘉穗, 孔荣宗, 等. CARDC激波风洞TSP技术研究进展[J].空气动力学学报, 2016, 34(6):738-743. doi: 10.7638/kqdlxxb-2015.0151

    Zhang K L, Zhou J H, Kong R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6):738-743. doi: 10.7638/kqdlxxb-2015.0151
    [22]
    张扣立, 常雨, 孔荣宗, 等.温敏漆技术及其在边界层转捩测量中的应用[J].宇航学报, 2013, 34(6):860-865. doi: 10.3873/j.issn.1000-1328.2013.06.017

    Zhang K L, Chang Y, Kong R Z, et al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics, 2013, 34(6):860-865. doi: 10.3873/j.issn.1000-1328.2013.06.017
    [23]
    李明, 祝智伟, 李志辉.红外热图在高超声速低密度风洞测热试验中的应用概述[J].实验流体力学, 2013, 27(3):108-112. doi: 10.3969/j.issn.1672-9897.2013.03.021

    Li M, Zhu Z W, Li Z H. The summarization of infrared thermography on aerodynamic heating measurement in hypersonic low density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):108-112. doi: 10.3969/j.issn.1672-9897.2013.03.021
    [24]
    Stainback P C, Johnson C B, Boney L B, et al. Comparison of theoretical predictions and heat-transfer measurements for a flight experiment at Mach 20(reentry F)[R]. NASA TM X-2560, 1972.
    [25]
    Kimmel R L, Adamczak D, Borg M P, et al. HIFiRE-1 and HIFiRE-5 test results[R]. DTIC ADA605731, 2014.
    [26]
    刘初平.气动热与热防护试验热流测量[M].北京:国防工业出版社, 2013.
    [27]
    国义军, 周宇, 肖涵山, 等.飞行试验热流辨识和边界层转捩滞后现象[J].航空学报, 2017, 38(10):121255. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710009

    Guo Y J, Zhou Y, Xiao H S, et al. Delay phenomenon of boundary layer transition according to heating flux identified from flight test[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121255. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710009
    [28]
    钱炜祺, 周宇, 何开锋, 等.考虑烧蚀情况下的表面热流辨识[J].空气动力学学报, 2014, 32(6):772-776. doi: 10.7638/kqdlxxb-2014.0038

    Qian W Q, Zhou Y, He K F, et al. Heat flux estimation for heat transfer problem with ablation[J]. Acta Aerodynamica Sinica, 2014, 32(6):772-776. doi: 10.7638/kqdlxxb-2014.0038
    [29]
    钱炜祺, 周宇, 何开锋, 等.表面热流辨识技术在边界层转捩位置测量中的应用初步研究[J].实验流体力学, 2012, 26(1):74-78. doi: 10.3969/j.issn.1672-9897.2012.01.015

    Qian W Q, Zhou Y, He K F, et al. A preliminary study for application of surface heat flux estimation technology in transition measurement[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):74-78. doi: 10.3969/j.issn.1672-9897.2012.01.015
    [30]
    何开锋, 汪清, 钱炜祺, 等.高超声速飞行器气动力/热参数辨识研究综述[J].实验流体力学, 2011, 25(5):99-104. doi: 10.3969/j.issn.1672-9897.2011.05.020

    He K F, Wang Q, Qian W Q, et al. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5):99-104. doi: 10.3969/j.issn.1672-9897.2011.05.020
    [31]
    Kandula M, Reinarts T. Corrections for convective heat flux gauges subjected to a surface temperature discontinuity[R]. AIAA-2002-3087, 2002.
    [32]
    孟松鹤, 丁小恒, 易法军, 等.高超声速飞行器表面测热技术综述[J].航空学报, 2014, 35(7):1759-1775. http://d.old.wanfangdata.com.cn/Periodical/hkxb201407001

    Meng S H, Ding X H, Yi F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1759-1775. http://d.old.wanfangdata.com.cn/Periodical/hkxb201407001
    [33]
    丁小恒.高超声速飞行试验热流密度测量方法与装置研究[D].哈尔滨: 哈尔滨工业大学, 2015.
    [34]
    孟松鹤, 金华, 王国林, 等.热防护材料表面催化特性研究进展[J].航空学报, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001

    Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001
    [35]
    丁明松, 董维中, 高铁锁, 等.传感器催化特性差异对气动热影响的计算分析[J].宇航学报, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014

    Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence on aero thermal environments caused by catalytic property distinction of heat flux sensor[J]. Journal of Astronautics, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)

    Article Metrics

    Article views (566) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return