Citation: | Feng Yifang, Xie Hui, Chen Tao, Zhao Hua. Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 54-61,71. DOI: 10.11729/syltlx20180096 |
[1] |
Galloni E. Analyses about parameters that affect cyclic variation in a spark ignition engine[J]. Applied Thermal Engineering, 2009, 29(5-6):1131-1137. DOI: 10.1016/j.applthermaleng.2008.06.001
|
[2] |
Xu K, Xie H, Chen T, et al. Effect of flame propagation on the auto-ignition timing in SI-CAI hybrid combustion (SCHC)[R]. SAE Technical Papers, 2014-01-2672, 2014.
|
[3] |
Joelsson T, Yu R S, Bai X S. Large eddy simulation of turbulent combustion in a spark-assisted homogenous charge compression ignition engine[J]. Combustion Science and Technology, 2012, 184(7-8):1051-1065. DOI: 10.1080/00102202.2012.663997
|
[4] |
Yoo C S, Luo Z Y, Lu T F, et al. A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions[J]. Proceedings of the Combustion Institute, 2013, 34(2):2985-2993. http://cn.bing.com/academic/profile?id=3d13346ba0c59b3eafe6d8ff093d61a2&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
Xie H, Xu K, Chen T, et al. Investigations into the influence of Dimethyl Ether (DME) micro flame ignition on the combustion and cyclic variation characteristics of flame propagation-auto-ignition hybrid combustion in an optical engine[J]. Combustion Science and Technology, 2016, 189(3):453-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2016.1223060
|
[6] |
Cha J, Kwon S, Kwon S, et al. Combustion and emission characteristics of a gasoline-dimethyl ether dual-fuel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2012, 226(12):1667-1677. DOI: 10.1177/0954407012450122
|
[7] |
Zhang H F. Experimental investigation of gasoline-dimethyl ether dual fuel CAI combustion with internal EGR[D]. London: Brunel University, 2011.
|
[8] |
徐康. DME微火源对汽油机高稀释混合燃烧调控机理研究[D].天津: 天津大学, 2017.
Xu K. Study of DME micro flame ignition hybrid combustion under high dilution conditions in a gasoline engine[D]. Tianjin: Tianjin University, 2017.
|
[9] |
Xie H, Lu J, Chen T, et al. Chemical effects of the incomplete-oxidation products in residual gas on the gasoline HCCI auto-ignition[J]. Combustion Science and Technology, 2014, 186(3):273-296. DOI: 10.1080/00102202.2013.858714
|
[10] |
O'Rourke P J, Amsden A A. A spray/wall interaction submodel for the KIVA-3 wall film model[R]. SAE Technical Paper, 2000-01-0271, 2000.
|
[11] |
Schmidt D P, Rutland C J. A new droplet collision algorithm[J]. Journal of Computational Physics, 2000, 164(1):62-80. DOI: 10.1006-jcph.2000.6568/
|
[12] |
Richards K J, Senecal P K, et al. Converge (Version 2.3) Manual[M]. Middleton, WI:Convergent Science Inc, 2016.
|
[13] |
Turns S R. An introduction to combustion:concepts and applications[M]. New York:McGraw-Hill Education, 2012.
|
[14] |
Cai L M, Pitsch H. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion and Flame, 2015, 162(5):1623-1637. DOI: 10.1016/j.combustflame.2014.11.018
|
[15] |
Burke U, Somers K P, O'Toole P, et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures[J]. Combustion and Flame, 2015, 162(2):315-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45f4569671a0afe3e958124c08d9b46a
|
[16] |
Chen Y L, Chen J Y. Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms[J]. Combustion and Flame, 2016, 174:77-84. DOI: 10.1016/j.combustflame.2016.09.006
|
[17] |
Chen Y L, Chen J Y. Towards improved automatic chemical kinetic model reduction regarding ignition delays and flame speeds[J]. Combustion and Flame, 2018, 190:293-301. DOI: 10.1016/j.combustflame.2017.11.024
|
[18] |
Xie H, Li L, Chen T, et al. Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium-high load[J]. Applied Energy, 2013, 101:622-633. DOI: 10.1016/j.apenergy.2012.07.015
|
[19] |
Li Y, Zhao H, Ladommatos N. Analysis of large-scale flow characteristics in a four-valve spark ignition engine[J]. Journal of Mechanical Engineering Science, 2002, 216(9):923-938. DOI: 10.1177/095440620221600906
|
[20] |
Liu D M, Wang T Y, Jia M, et al. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift[J]. Experiments in Fluids, 2012, 53(3):585-602. DOI: 10.1007/s00348-012-1314-4
|
[21] |
Huang Y, Sung C J, Eng J A. Laminar flame speeds of primary reference fuels and reformer gas mixtures[J]. Combustion and Flame, 2004, 139(3):239-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87b3f47808eb35330dfb30f8dd6d2633
|
[22] |
Jerzembeck S, Peters N, Pepiot-Desjardins P, et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline:experimental and numerical investigation[J]. Combustion and Flame, 2009, 156(2):292-301.
|
[23] |
Daly C A, Simmie J M, Würmel J, et al. Burning velocities of dimethyl ether and air[J]. Combustion and Flame, 2001, 125(4):1329-1340. DOI: 10.1016-j.proci.2004.08.251/
|
[24] |
Zhao Z, Kazakov A, Dryer F L. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry[J]. Combustion and Flame, 2004, 139(1-2):52-60. DOI: 10.1016/j.combustflame.2004.06.009
|
[25] |
Qin X, Ju Y G. Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures[J]. Proceedings of the Combustion Institute, 2005, 30(1):233-240. DOI: 10.1016-j.proci.2004.08.251/
|
[26] |
Wang Y L, Holley A T, Ji C, et al. Propagation and extinction of premixed dimethyl-ether/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1035-1042.
|
[1] | GUO Jiangtao, ZHOU Yihui, HU Dapeng, LIU Zhijun, HUANG Zhaofeng, GAO Feng. Visualization experiment of wave dynamics in pressure oscillation tube[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(5): 54-64. DOI: 10.11729/syltlx20220039 |
[2] | XU Zheng, LIU Ri, WANG Tianhao, CHI Zhendong, WANG Zuobin, LI Li. Simulation and fabrication of bionic sharkskin composite micro-nano wind resistance reduction structure[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 107-114. DOI: 10.11729/syltlx20220002 |
[3] | FENG Xiaoou, JIN Yi, ZHAI Chao. Summary of research on flame 3D reconstruction based on computed tomography of chemiluminescence technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 1-15. DOI: 10.11729/syltlx20210148 |
[4] | YUAN Xun, YU Xin, PENG Jiangbo, QIN Fei, LIU Bing, CAO Zhen, GAO Long, HAN Minghong. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 30-36. DOI: 10.11729/syltlx20210150 |
[5] | SONG Ge, ZHAO Yue, WANG Lei, LIU Tao, WU Yingchun, LIN Wenhui, WU Xuecheng. Measurement of 3D airblast swirl atomization field at low temperature with off-axis holography[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 21-29. DOI: 10.11729/syltlx20210158 |
[6] | WANG Junqi, CHEN Zheng, NI Zhaoyong, GAN Caijun, LI Lang. Experimental study on structural characteristics of separation flow induced by 3D wedge in hypersonic laminar flow by oil visualization[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 115-120. DOI: 10.11729/syltlx20180026 |
[7] | WU Taofeng, LUAN Yinsen, SHI Shengxian. Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 75-82. DOI: 10.11729/syltlx20200092 |
[8] | SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. DOI: 10.11729/syltlx20190135 |
[9] | Xiang Guangwei, Wang Chao, Wan Liqiang, Mi Peng, Wang Shumin. Design and application of wind tunnel strain gauge balance protective device based on 3D printing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 100-104. DOI: 10.11729/syltlx20160114 |
[10] | Di Qingfeng, Hua Shuai, Gu Chunyuan, Ye Feng, Pang Dongshan, Jiang Fan, Yang Peiqiang. Study of micro flow visualization with nuclear magnetic resonance in core[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 98-103. DOI: 10.11729/syltlx20150107 |