Song Wei, Ai Bangcheng, Jiang Zenghui, Lu Wei. Free flight static and dynamic aerodynamic characteristics for re-entry capsule at transonic speed[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 89-94. DOI: 10.11729/syltlx20180083
Citation: Song Wei, Ai Bangcheng, Jiang Zenghui, Lu Wei. Free flight static and dynamic aerodynamic characteristics for re-entry capsule at transonic speed[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 89-94. DOI: 10.11729/syltlx20180083

Free flight static and dynamic aerodynamic characteristics for re-entry capsule at transonic speed

More Information
  • Received Date: June 13, 2018
  • Revised Date: September 06, 2018
  • This paper studies the motion and aerodynamic characteristics of the re-entry capsule with stable fins at transonic speed by the wind-tunnel free-flight test in which the motion freedom is not limited. When the wind tunnel test model flights freely by the observational window, the high speed camera captures the motion image immediately by a single light path, and then the model motion trajectory and attitude angle can be acquired by image acquisition software. Finally, the pitching static and dynamic derivatives coefficient are derived by the parameter differential method from the recorded angular motion of the model of more than two cycles with the linear and nonlinear motion equations. The result shows that the static derivative coefficient C obtained by the linear and nonlinear aerodynamic parameter identification is less than zero and the variation is not significant. From the results of nonlinear aerodynamic parameters identification, the value of static derivatives coefficient of the re-entry capsule is mainly determined by the linear term C0, and the nonlinear term C2α2 is relatively smaller. The nonlinearity of the static derivatives coefficient is weak, which can be approximated by the linear aerodynamic model. The dynamic derivative coefficient of the re-entry capsule is nonlinear in the range of experimental angles of attack. It is determined by the linear term in the range of small angle of attack, and dominated by the nonlinear term in large angle of attack.
  • [1]
    纪楚群, 周伟江.钟形返回舱空气动力特性数值模拟[J].航天返回与遥感, 2001, 22(1):32-37. DOI: 10.3969/j.issn.1009-8518.2001.01.007

    Ji C Q, Zhou W J. A numerical simulation of aerodynamic characters for bell capsule[J]. Spacecraft Recovery & Remote Sensing, 2001, 22(1):32-37. DOI: 10.3969/j.issn.1009-8518.2001.01.007
    [2]
    赵梦熊.载人飞船返回舱的动稳定性[J].气动实验与测量控制, 1995, 9(2):1-8. http://www.cnki.com.cn/Article/CJFDTotal-LTLC502.000.htm

    Zhao M X. The dynamic stability characteristics of capsule type re-entry vehicles[J]. Aerodynamic Experiment and Measurement & Control, 1995, 9(2):1-8. http://www.cnki.com.cn/Article/CJFDTotal-LTLC502.000.htm
    [3]
    陈河梧.飞船返回舱高超声速气动特性的风洞实验分析[J].航天器工程, 2008, 17(5):77-81. DOI: 10.3969/j.issn.1673-8748.2008.05.014

    Chen H W. Wind-tunnel test analysis on hypersonic aero-dynamic characteristics of returnable module[J]. Spacecraft Engineering, 2008, 17(5):77-81. DOI: 10.3969/j.issn.1673-8748.2008.05.014
    [4]
    张涵信, 袁先旭, 叶友达, 等.飞船返回舱俯仰振荡的动态稳定性研究[J].空气动力学学报, 2002, 20(3):247-259. DOI: 10.3969/j.issn.0258-1825.2002.03.001

    Zhang H X, Yuan X X, Ye Y D, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3):247-259. DOI: 10.3969/j.issn.0258-1825.2002.03.001
    [5]
    袁先旭, 张涵信, 谢昱飞.飞船返回舱再入俯仰动稳定吸引子数值仿真[J].空气动力学学报, 2007, 25(4):431-436. DOI: 10.3969/j.issn.0258-1825.2007.04.004

    Yuan X X, Zhang H X, Xie Y F. Numerical simulation for dynamic stability in pitching of unfinned reentry capsule and bifurcation with Mach number prediction[J].Acta Aerodynamica Sinica, 2007, 25(4):431-436. DOI: 10.3969/j.issn.0258-1825.2007.04.004
    [6]
    周伟江.返回舱自由振动跨声速非定常流场数值模拟[J].空气动力学学报, 2000, 18(1):46-51. DOI: 10.3969/j.issn.0258-1825.2000.01.007

    Zhou W J. Numerical simulation of unsteady transonic flow around a free oscillating reentry vehicle[J]. Acta Aerodynamica Sinica, 2000, 18(1):46-51. DOI: 10.3969/j.issn.0258-1825.2000.01.007
    [7]
    Abe T, Sato S, Matsukawa Y, et al. Study for dynamically unstable motion of reentry capsule[R]. AIAA-2000-2589, 2000.
    [8]
    Susumu T, Kozo F. Study on the mechanism of the instability of a re-entry capsule at transonic speeds[R]. AIAA-2000-2603, 2000.
    [9]
    Susumu T, Kouju H, Kozo F. Numerical analysis of dynamic stability of a reentry capsule at transonic speed[J]. AIAA Journal, 2001, 39(4):646-653. DOI: 10.2514/2.1357
    [10]
    刘伟, 赵海洋, 杨小亮.返回舱动态稳定性分析及被动控制方法研究[J].中国科学:物理学力学天文学, 2010, 40(9):1156-1164. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201009012.htm

    Liu W, Zhao H Y, Yang X L. Analysis of dynamic stability and research of passive control method for capsule[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2010, 40(9):1156-1164. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201009012.htm
    [11]
    宋玉辉, 陈农, 秦永明.亚跨超声速返回舱动稳定特性[J].航天返回与遥感, 2014, 35(2):31-38. DOI: 10.3969/j.issn.1009-8518.2014.02.005

    Song Y H, Chen N, Qin Y M. Sub-, trans-and super-sonic dynamic stability characteristics for reentry capsule[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(2):31-38. DOI: 10.3969/j.issn.1009-8518.2014.02.005
    [12]
    胡静, 宋玉辉, 陈农, 等.返回舱动稳定特性风洞试验的影响参数[J].航天返回与遥感, 2013, 34(5):14-19. DOI: 10.3969/j.issn.1009-8518.2013.05.003

    Hu J, Song Y H, Chen N, et al. Study of key parameters for dynamic stability of reentry capsule[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(5):14-19. DOI: 10.3969/j.issn.1009-8518.2013.05.003
    [13]
    Mitcheltree R A, Fremaux C M, Yates L A. Subsonic static and dynamic aerodynamics of blunt entry vehicles[R]. AIAA-99-1020, 1999.
    [14]
    何开锋, 和争春.飞船返回舱跨声速全局稳定性研究[J].飞行力学, 1999, 17(3):34-38. DOI: 10.3969/j.issn.1002-0853.1999.03.007

    He K F, He Z C. The global stability analysis of reentry capsule transonic flight[J]. Flight Dynamics, 1999, 17(3):34-38. DOI: 10.3969/j.issn.1002-0853.1999.03.007
    [15]
    Chapman G T, Mitcheltree R A, Hathaway W H. Transonic and low supersonic static and dynamic aerodynamic charac-teristics of the stardust sample return capsule[R]. AIAA-99-1021, 1999.
    [16]
    Sommer S C, Compton D L, Short B J. Free-flight measurements of static and dynamic stability of models of the Project Mercury re-entry capsule at Mach numbers 3 and 9.5[R]. NASA TM X-373, 1960.
    [17]
    Schoenenberger M, Hathaway W, Yates L, et al. Ballistic range testing of the Mars Exploration Rover entry capsule[R]. AIAA-2005-55, 2005.
    [18]
    Schoenenberger M, Yates L, Hathaway W. Dynamic stability testing of the Mars Science Laboratory entry capsule[R]. AIAA-2009-3917, 2009.
    [19]
    Cheatwood F M, Winchenbach G L, Hathaway W, et al. Dynamic stability testing of the genesis sample return capsule[R]. AIAA-2000-1009, 2000.
    [20]
    苑朝凯, 孙英英, 姜宗林.高超声速脉冲风洞模型自由飞试验技术[J].气体物理, 2016, 1(2):55-63. http://d.old.wanfangdata.com.cn/Periodical/qtwl201602007

    Yuan C K, Sun Y Y, Jiang Z L. Free flight test in hypersonic impulse wind tunnel[J]. Physics of Gases, 2016, 1(2):55-63. http://d.old.wanfangdata.com.cn/Periodical/qtwl201602007
    [21]
    马家欢, 唐宗衡, 张小平, 等.激波管风洞中锥模型静、动稳定性导数的测量[J].力学学报, 1980, 16(1):84-89. http://www.cnki.com.cn/Article/CJFDTotal-LXXB198001009.htm

    Ma J H, Tang Z H, Zhang X P, et al. The measurement of the static and dynamic stability derivatives of conical models in the shock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 1980, 16(1):84-89. http://www.cnki.com.cn/Article/CJFDTotal-LXXB198001009.htm
    [22]
    宋威, 蒋增辉, 贾区耀.细长锥边界层绊线转捩风洞自由飞试验[J].力学学报, 2006, 48(6):1301-1307. http://d.old.wanfangdata.com.cn/Periodical/lxxb201606005

    Song W, Jiang Z H, Jia Q Y. Wind-tunnel free-flight test of boundary layer transition induced by tripped thread for slender cone[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 48(6):1301-1307. http://d.old.wanfangdata.com.cn/Periodical/lxxb201606005
    [23]
    蒋增辉, 宋威, 陈农.小迎角高超声速非旋转钝锥非线性运动分析[J].航空学报, 2016, 37(5):1454-1461. http://d.old.wanfangdata.com.cn/Periodical/hkxb201605006

    Jiang Z H, Song W, Chen N. Analysis of nonlinear motion for hypersonic non-spinning blunt cones at small angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1454-1461. http://d.old.wanfangdata.com.cn/Periodical/hkxb201605006
    [24]
    Chapman G T, Kirk D B. A new method for extracting aerodynamics coefficients from free-flight data[R]. AIAA-69-134, 1969.
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (329) PDF downloads (39) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close