Li Yiming, Li Zhufei, Yang Jiming, Wu Yingchuan. Characteristics of the shock train motions caused by transverse injections into the isolator[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 1-6. DOI: 10.11729/syltlx20180023
Citation: Li Yiming, Li Zhufei, Yang Jiming, Wu Yingchuan. Characteristics of the shock train motions caused by transverse injections into the isolator[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 1-6. DOI: 10.11729/syltlx20180023

Characteristics of the shock train motions caused by transverse injections into the isolator

More Information
  • Received Date: February 22, 2018
  • Revised Date: April 10, 2018
  • Characteristics of the shock train motions in a two-dimensional inlet/isolator were investigated in a shock tunnel with a nominal Mach number of 6. The backpressure that supported the shock train was well controlled by using transverse injections into the isolator. High-speed schlieren and wall pressure measurements were carried out. Results show that the reflected shock waves in the inlet/isolator started flow form the background shock waves. As the transverse injections are opened, the downstream flow is accumulated with the increase of the backpressure and the induce of the shock train in the isolator. When the shock train moves upstream under the influence of the high backpressure, the shape and intensity of the leading shock in the shock train are changed by the background shock waves. Because strong adverse pressure gradients already exist near the incident points of the background shock waves, the leading shock of the shock train at the same side would be enhanced for moving upstream quickly. As the shock train is expelled out of the isolator, the leading shock oscillates near the shoulder for a short duration, until the backpressure is increased further to initiate the inlet buzz. When the backpressure is reduced by switching off the transverse injections, the inlet restarts.
  • [1]
    Heiser W H, Pratt D T, Daley D H, et al. Hypersonic airbreathing propulsion[M]. Reston, VA:AIAA, 1994.
    [2]
    Waltrup P J, Billig F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10):1404-1408. DOI: 10.2514/3.50600
    [3]
    Billig F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1999, 9(4):499-514. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608024
    [4]
    Smart M K. Flow modeling of pseudoshocks in backpressured ducts[J]. AIAA Journal, 2015, 53(12):3577-3588. DOI: 10.2514/1.J054021
    [5]
    Shapiro A H. The dynamics and thermodynamics of compressible fluid flow[M]. New York:Wiley, 1953.
    [6]
    苏纬仪, 王赫, 陈云, 等.壁温对隔离段激波串振荡的影响[J].航空动力学报, 2017, 32(7):1605-1612. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707010

    Su W Y, Wang H, Chen Y, et al. Effects of wall temperature on pseudo-shock oscillations in isolator[J]. Journal of Aerospace Power, 2017, 32(7):1605-1612. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707010
    [7]
    马广甫, 谢文忠, 林宇, 等.二元超声速进气道扩张段内伪激波特性[J].航空动力学报, 2017, 32(8):1950-1961. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201708019

    Ma G F, Xie W Z, Lin Y, et al. Pseudo-shock characteristics in the two-dimensional supersonic inlet diffuser[J]. Journal of Aerospace Power, 2017, 32(8):1950-1961. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201708019
    [8]
    Huang H X, Tan H J, Sun S, et al. Behavior of shock train in curved isolators with complex background waves[J]. AIAA Journal, 2017, 56(1):1-13. http://cn.bing.com/academic/profile?id=438d0e13d1d367f364e3216031f6e0f3&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    Xu K J, Chang J T, Zhou W X, et al. Mechanism of shock train rapid motion induced by variation of attack angle[J]. Acta Astronautica, 2017, 140:18-26. DOI: 10.1016/j.actaastro.2017.08.009
    [10]
    Li N, Chang J T, Xu K J, et al. Prediction dynamic model of shock train with complex background waves[J]. Physics of Fluids, 2017, 29(11):116103. DOI: 10.1063/1.5000876
    [11]
    熊冰, 王振国, 范晓樯, 等.隔离段内正激波串受迫振荡特性研究[J].推进技术, 2017, 38(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701001

    Xiong B, Wang Z G, Fan X Q, et al. Characteristics of forced normal shock-train oscillation in isolator[J]. Journal of Propulsion Technology, 2017, 38(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701001
    [12]
    田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性实验研究[J].推进技术, 2014, 35(8):1030-1039. http://d.old.wanfangdata.com.cn/Periodical/tjjs201408004

    Tian X A, Wang C P, Cheng K M. Experimental investigation of dynamic characteristics of oblique shock train in Mach 5 flow[J]. Journal of Propulsion Technology, 2014, 35(8):1030-1039. http://d.old.wanfangdata.com.cn/Periodical/tjjs201408004
    [13]
    Tan H J, Li L G, Wen Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal, 2011, 42(2):279-288. http://cn.bing.com/academic/profile?id=07632c8aaa031462506568ca4882670f&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Li N, Chang J T, Yu D R, et al. Mathematical model of shock-train path with complex background waves[J]. Journal of Propulsion and Power, 2016, 33(2):468-478. http://cn.bing.com/academic/profile?id=abd32ddb63b6023977c23c747987d7ba&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    Xu K J, Chang J T, Zhou W X, et al. Mechanism and prediction for occurrence of shock-train sharp forward movement[J]. AIAA Journal, 2016, 54(1):1403-1412. http://cn.bing.com/academic/profile?id=65f756e400b39cf125c82f075c0b319e&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    浮强, 宋文艳, 韩小宝, 等.双模态燃烧室隔离段激波串位置的测量及控制[J].航空计算技术, 2017, 47(2):20-24. DOI: 10.3969/j.issn.1671-654X.2017.02.006

    Fu Q, Song W Y, Han X B, et al. Dual-mode scramjet isolator shock train leading edge measurement and control[J]. Aeronautical Computing Technique, 2017, 47(2):20-24. DOI: 10.3969/j.issn.1671-654X.2017.02.006
    [17]
    Ridings A N, Smart M K. Flow establishment of precombustion shock trains in a shock tunnel[J]. AIAA Journal, 2017, 55(9):2902-2911. DOI: 10.2514/1.J055590
    [18]
    Chang J T, Li N, Xu K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89:1-22. DOI: 10.1016/j.paerosci.2016.12.001
    [19]
    Gnani F, Zare-Behtash H, Kontis K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Sciences, 2016, 82:36-56. DOI: 10.1016/j.paerosci.2016.02.001
    [20]
    Do H, Im S K, Mungal M G, et al. The Influence of boundary layers on supersonic inlet flow unstart induced by mass injection[J]. Experiments in Fluids, 2011, 51(3):679-691. DOI: 10.1007/s00348-011-1077-3
    [21]
    李祝飞, 高文智, 李鹏, 等.二元高超声速进气道激波振荡特性实验[J].推进技术, 2012, 33(5):676-682. http://d.old.wanfangdata.com.cn/Periodical/tjjs201205003

    Li Z F, Gao W Z, Li P, et al. Experimental investigation on the shock wave oscillation behaviors in a two-dimensional hypersonic inlet flow[J]. Journal of Propulsion Technology, 2012, 33(5):676-682. http://d.old.wanfangdata.com.cn/Periodical/tjjs201205003
    [22]
    Li Z F, Gao W Z, Jiang H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2485-2492. DOI: 10.2514/1.J052384
    [23]
    李祝飞, 高文智, 杨基明.一种二元进气道起动特性的数值与实验考察[J].推进技术, 2016, 37(7):1224-1232. http://d.old.wanfangdata.com.cn/Periodical/tjjs201607004

    Li Z F, Gao W Z, Yang J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology, 2016, 37(7):1224-1232. http://d.old.wanfangdata.com.cn/Periodical/tjjs201607004
  • Related Articles

    [1]HE Xuzhao, ZHOU Zheng, ZHANG Juntao, HE Yuanyuan, WU Yingchuan. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095
    [2]Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019
    [3]Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. DOI: 10.11729/syltlx20190028
    [4]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [5]Wei Feng, Zhou Zheng, Li Li, He Xuzhao. Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 1-7. DOI: 10.11729/syltlx20170049
    [6]Wu Chaojun, Nie Bowen, Kong Peng, Lu Xiangyu. Test technology on unsteady characteristics of inlet flow during fighter plane maneuvers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 98-104. DOI: 10.11729/syltlx20160027
    [7]Lyu Zhenjun, Wang Xudong, Ji Weidong, Wang Jiangfeng. Design and experimental analysis of three-stage compression cone-derived waverider[J]. Journal of Experiments in Fluid Mechanics, 2015, (5): 38-44. DOI: 10.11729/syltlx20150003
    [8]He Xuzhao, Zhou Zheng, Mao Pengfei, Le Jialing. Design and experimental study of osculating inward turning cone waverider/inlet (OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, (3): 39-44. DOI: 10.11729/syltlx20120176
    [9]XIAO Hong, GAO Chao, DANG Yun-qing. Experimental study on aerodynamic characteristics of a hypersonic waverider configuration[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 34-36,40. DOI: 10.3969/j.issn.1672-9897.2011.03.008
    [10]ZHANG Hong-jun, XIN Xian-jun, BAI Kui, SHEN Qing. Design and wind tunnel test on supersonic inlet with boundary layer bleed[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 88-91. DOI: 10.3969/j.issn.1672-9897.2008.01.019

Catalog

    Article Metrics

    Article views (247) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close