Song Wenyan, Zhang Dongqing, Lyu Chongyang. Compared study of performances of combined cycle engines[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 19-28. DOI: 10.11729/syltlx20180020
Citation: Song Wenyan, Zhang Dongqing, Lyu Chongyang. Compared study of performances of combined cycle engines[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 19-28. DOI: 10.11729/syltlx20180020

Compared study of performances of combined cycle engines

More Information
  • Received Date: January 31, 2018
  • Revised Date: April 24, 2018
  • Performances of different combined cycle engine concepts, including Turbine/Ramjet/Dual-mode Scramjet (TE/RJ/DMSJ), Turbine/Ejector Ramjet/Dual-mode Scramjet(TE/ERJ/DMSJ), Pre-cooled Turbine/Dual-mode Scramjet (PCTE/DMSJ) and Air-turbo-rocket/Dual-mode Scramjet (ATR/DMSJ), are studied. The altitude-velocity characteristics of the combined cycle engines are obtained. Based on the same mission and aerodynamic characteristics of a hypersonic vehicle capable of Ma 6.5 cruise, the range, cruise distance and acceleration time are calculated of the vehicle by using the different combined cycle engines. The results indicate that the TE/RJ/DMSJ has the highest specific impulse among the four kinds of engines. The vehicle has the longest range and acceleration time by using TE/RJ/DMSJ under the same thrust loading and wing loading and it has the shortest range and acceleration time by using ATR/DMSJ.
  • [1]
    Bartolotta P A, McNelis N B, Shafer D G. High speed turbines: development of a turbine accelerator (RTA) for space access[R]. AIAA-2003-6943, 2003.
    [2]
    Hagseth P E, Benner K W, Gillen S, et al. Technology deve-lopment for high speed/hypersonic applications[R]. AIAA-2005-3212, 2005.
    [3]
    Carter P, Balepin V V. Mass injection and precompressor cooling engines analyses[R]. AIAA-2002-4127, 2002.
    [4]
    Balepin V. Liston G W. The SteamJetTM: Mach 6+ turbine engine with inlet air conditioning[R]. AIAA-2001-3238, 2001.
    [5]
    Sato T, Tanatsugu N, Hatta H, et al. Development study of the ATREX engine for TSTO spaceplane[R]. AIAA-2001-1839, 2001.
    [6]
    Isomura K, Omi J, Murooka T, et al. A feasibility study of an ATREX engine at approved technology levels[R]. AIAA-2001-1836, 2001.
    [7]
    Sawai S, Sato T, Kobayashi H, et al. Flight test plan for ATREX engine development[R]. AIAA-2003-7027, 2003.
    [8]
    Harada K, Tanatsugu N, Sato T. Development study on precooler for ATREX engine[R]. AIAA-1999-4897, 1999.
    [9]
    Kojima T, Tanatsugu N, Sato T, et al. Development study on axisymmetric air inlet for ATREX engine[R]. AIAA-2001-1895, 2001.
    [10]
    Bulman M J, Siebenhaar A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles[R]. AIAA-2011-2397, 2011.
    [11]
    Siebenhaar A, Bogar T J. Integration and vehicle performance assessment of the aerojet "Trijet" combined-cycle engine[R]. AIAA-2009-7420, 2009.
    [12]
    廉筱纯, 吴虎.航空发动机原理[M].西安:西北工业大学出版社, 2005.
    [13]
    Sellers J F, Daniele C J. DYNGEN: a program for calculating steady-state and transient performance of turbojet and turbofan engines[R]. NASA-TN-D-7901, 1975.
    [14]
    骆广琦, 桑增产, 王如根, 等.航空燃气涡轮发动机数值仿真[M].北京:国防工业出版社, 2007.
    [15]
    商旭升, 蔡元虎, 陈玉春, 等.高速飞行器用射流预冷却涡轮基发动机性能模拟[J].中国空间科学技术, 2005, 25(4):54-58. DOI: 10.3321/j.issn:1000-758X.2005.04.009

    Shang X S, Cai Y H, Chen Y C, et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology, 2005, 25(4):54-58. DOI: 10.3321/j.issn:1000-758X.2005.04.009
    [16]
    陈湘, 陈玉春, 屠秋野, 等.空气涡轮火箭发动机的性能研究[J].弹箭与制导学报, 2009, 29(2):162-165. DOI: 10.3969/j.issn.1673-9728.2009.02.046

    Chen X, Chen Y C, Tu Q Y, et al. Research on performance of air-turbo-rocket[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(2):162-165. DOI: 10.3969/j.issn.1673-9728.2009.02.046
    [17]
    李文龙, 郭海波, 南向谊.空气涡轮火箭发动机热力循环特性分析[J].火箭推进, 2015, 41(4):48-54. DOI: 10.3969/j.issn.1672-9374.2015.04.008

    Li W L, Guo H B, Nan X Y. Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine[J]. Journal of Rocket Propulsion, 2015, 41(4):48-54. DOI: 10.3969/j.issn.1672-9374.2015.04.008
    [18]
    潘宏亮, 林彬彬, 刘洋.加力式空气涡轮火箭发动机特性研究[J].固体火箭发动机技术, 2010, 33(6):650-665. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201006011

    Pan H L, Lin B B, Liu Y. Performance study on air turbo rocket in augmented mode[J]. Journal of Solid Rocket Technology, 2010, 33(6):650-665. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201006011
    [19]
    Heiser W H, Pratt D T, Daley D H, et al. Hypersonic airbreathing propulsion[M]. Reston, VA:AIAA Education, 1994.
    [20]
    Mattingly J D, Heiser W H, Pratt D T. Aircraft engine design[M]. 2nd ed. Reston, VA:AIAA Education, 2002.
    [21]
    Walker S, Tang M, Mamplata C. TBCC propulsion for a Mach 6 hypersonic airplane[R]. AIAA-2009-7238, 2009.
    [22]
    Kloesel K J, Ratnayake N A, Clark C M. A technology pathway for airbreathing, combined-cycle, horizontal space launch through SR-71 based trajectory modeling[R]. AIAA-2011-2229, 2011.
    [23]
    Tzong G, Jacobs R, Liguore S. Predictive capability for hypersonic structural response and life prediction: Phase 1-identification of knowledge gaps[R]. Air Force Research Laboratory-RB-WP-TR-2010-3068, 2010.
    [24]
    Tang M, Mamplata C. Two steps instead of a giant leap-an approach for air breathing hypersonic flight[R]. AIAA-2011-2237, 2011.
    [25]
    Hirschel E H, Weiland C. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Berlin:Springer Science and Business Media, 2009.
    [26]
    Anderson D, Tannehill J C, Pletcher R H. Computational fluid mechanics and heat transfer[M]. 3rd ed. Boca Raton:CRC Press, 2012.

Catalog

    Article Metrics

    Article views (648) PDF downloads (45) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close