Wang Jinhua, Nie Yaohui, Chang Min, Zhang Meng, Huang Zuohua. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147
Citation: Wang Jinhua, Nie Yaohui, Chang Min, Zhang Meng, Huang Zuohua. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147

Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame

More Information
  • Received Date: November 01, 2017
  • Revised Date: December 24, 2017
  • Turbulent flame structure represents the species, velocity and temperature field in the turbulent combustion, which reflects the interaction between the turbulence and the combustion. It is also important for combustion model validation. The conventional PDF of curvature method can not accurately reflect the folded regions in the turbulent flame, while the network topology analysis can demonstrate these regions as it can mark the key nodes or structure in a system. In this paper, the network structure of the turbulent premixed Bunsen flame is constructed to trace the folded regions in turbulent flames. Results show that the folded regions can be traced by network structure. These regions are mainly caused by DL instability in weak turbulence, while they are mainly affected by turbulence vortex wrinkling as turbulence intensity increases. The influence of DL instability on turbulent premixed Bunsen flames is constrained by flame development. At the bottom of Bunsen flame, the DL instability does not wrinkle the flame. As the flame propagates to the downstream, the flame becomes more wrinkled due to DL instability.
  • [1]
    Peters N. Turbulent combustion[M]. Cambridge University Press, 2000.
    [2]
    Tamadonfar Parsa, Gülder ömer L. Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames[J]. Combustion and Flame, 2014, 161(12):3154-3165. DOI: 10.1016/j.combustflame.2014.06.014
    [3]
    Fragner R, Halter F, Mazellier N, et al. Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames[J]. Proceedings of the Combustion Institute, 2015, 35(2):1527-1535. DOI: 10.1016/j.proci.2014.06.036
    [4]
    Poludnenko A Y, Oran E S. The interaction of high-speed turbulence with flames:Global properties and internal flame structure[J]. Combustion and Flame, 2010, 157(5):995-1011. DOI: 10.1016/j.combustflame.2009.11.018
    [5]
    Lipatnikov A N, Chomiak J. Effects of premixed flames on turbulence and turbulent scalar transport[J]. Progress in Energy and Combustion Science, 2010, 36(1):1-102. DOI: 10.1016/j.pecs.2009.07.001
    [6]
    Nishiki S. Modeling of flame-generated turbulence based on direct numerical simulation databases[J]. Proceedings of the Combustion Institute, 2002, 29:2017-2022. DOI: 10.1016/S1540-7489(02)80246-2
    [7]
    Lipatnikov A N, Chomiak J. Turbulent flame speed and thickness:phennomenology, evaluation, and application in multi-dimensional simulations[J]. Progress in Energy & Combustion Science, 2002, 28:1-74. https://www.sciencedirect.com/science/article/pii/S0360128501000077
    [8]
    Fureby C. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1):593-601. DOI: 10.1016/j.proci.2004.08.068
    [9]
    Cintosun Esen, Smallwood Gregory J, Gülder ömer L. Flame surface fractal characteristics in premixed turbulent combustion at high turbulence intensities[J]. AIAA Journal, 2007, 45(11):2785-2789. DOI: 10.2514/1.29533
    [10]
    Bradley D. Application of a reynolds stress, stretched flamelet, mathematical model to computations of turbulent burning velocities andcomparison with experiments[J]. Combustion & Flame, 1994, 96:221-248. https://www.sciencedirect.com/science/article/pii/0010218094900116
    [11]
    Yeung P K. Lagrangian statistics from direct numerical simulations of isotropic turbulence[J]. Journal of Fluid Mechanics, 1989, 207:531-586. DOI: 10.1017/S0022112089002697
    [12]
    Pope S. Lagrangian PDF methods for turbulent flows[J]. Annu Rev Fluid Mech, 1994, 26:23-63. DOI: 10.1146/annurev.fl.26.010194.000323
    [13]
    Chaudhuri S. Life of flame particles embedded in premixed flames interacting with near isotropic turbulence[J]. Proceedings of the Combustion Institute, 2015, 35(2):1305-1312. DOI: 10.1016/j.proci.2014.08.007
    [14]
    Chen H J. The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion[J]. Combustion & Flame, 1999:15-48. http://cn.bing.com/academic/profile?id=91691432f860044c4cc75574cbba6e55&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    Liu C, Zhou W X, Yuan W K. Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence[J]. Physica A:Statistical Mechanics and its Applications, 2010, 389(13):2675-2681. DOI: 10.1016/j.physa.2010.02.043
    [16]
    Murugesan Meenatchidevi, Sujith R I. Combustion noise is scale-free:transition from scale-free to order at the onset of thermoacoustic instability[J]. Journal of Fluid Mechanics, 2015, 772:225-245. DOI: 10.1017/jfm.2015.215
    [17]
    张猛, 王金华, 谢永亮, 等.利用OH_PLIF测量CH4/H2/空气混合气湍流燃烧速率[J].燃烧科学与技术, 2013, 19(6):512-516. http://gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=05

    Zhang M, Wang J H, Xie Y L, et al. Measurement of turbulent burning velocity of CH4/H2/Air mixtures using OH-PLIF[J]. Journal of Combustion Science and Technology, 2013, 19(6):512-516. http://gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=05
    [18]
    Zhang M, Wang J H, Wu J, et al. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(10):5176-5185. DOI: 10.1016/j.ijhydene.2014.01.038
    [19]
    Kobayashi H, Tamura T, Maruto K, et al. Burning velocity of turbulent premixed flames in a high pressure environment[J]. Proceedings of the Combustion Institute, 1996, 26(1):389-396. DOI: 10.1016/S0082-0784(96)80240-2
    [20]
    张猛, 王金华, 俞森彬, 等.自适应阈值二值法提取湍流火焰前锋面结构[J].燃烧科学与技术, 2016, 22(3):212-217. http://journals.tju.edu.cn/rs/oa/scriptlsit.aspx?kind=Field&colid=1

    Zhang M, Wang J H, Yu S B, et al. Flame front tracking of turbulent premixed flames using adaptive threshold binarization[J]. Journal of Combustion Science and Technology, 2016, 22(3):212-217. http://journals.tju.edu.cn/rs/oa/scriptlsit.aspx?kind=Field&colid=1
    [21]
    Luque B, Lacasa L, Ballesteros F, et al. Horizontal visibility graphs:Exact results for random time series[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2009, 80(2):046103. http://cn.bing.com/academic/profile?id=71d2259316f2903d95668ed2a6c721a5&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Bresenham J E. Algorithm for computer control of a digital plotter[J]. IBM Systems Journal, 1965, 4(1):25-30. DOI: 10.1147/sj.41.0025
    [23]
    Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509. DOI: 10.1126/science.286.5439.509
    [24]
    Hamlington P E, Poludnenko A Y, Oran E S. Interactions between turbulence and flames in premixed reacting flows[J]. Physics of Fluids, 2011, 23(12):125111. DOI: 10.1063/1.3671736
    [25]
    Chakraborty N, Klein M, Swaminathan N. Effects of lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1409-1417. DOI: 10.1016/j.proci.2008.06.021
    [26]
    Fruchterman T M J, Reingold E M. Graph drawing by force-directed placement[J]. Software Practice & Experience, 2010, 21(11):1129-1164. http://cn.bing.com/academic/profile?id=47fec71599586b4db1914c25cba86c0e&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    Scholz M. Node similarity as a basic principle behind connectivity in complex networks[J]. Computer Science, 2015:1-7. http://cn.bing.com/academic/profile?id=ddb6e0727cf2e5cf67a5ef7efd3ee4ec&encoded=0&v=paper_preview&mkt=zh-cn
    [28]
    Boyer L, Quinard J. On the dynamics of anchored flames[J]. Combustion & Flame, 1990, 82(1):51-65. http://cn.bing.com/academic/profile?id=a9bbda85daa4eb50d8e2717d186a4bfc&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    Lieuwen T. Local consumption speed of turbulent premixed flames-An analysis of "memory effect"[J]. Combustion & Flame, 2010, 157:955-965. http://www.sciencedirect.com/science/article/pii/S0010218009002855
    [30]
    Clavin P, Williams F A. Theory of premixed-flame propagation in large-scale turbulence[J]. Journal of Fluid Mechanics, 2006, 90(3):589-604. http://cn.bing.com/academic/profile?id=72b3b47bc5a56ca0ac6ef4860f677a1b&encoded=0&v=paper_preview&mkt=zh-cn
    [31]
    Aldredge R C, Williams F A. Influence of wrinkled premixed-flame dynamics on large-scale, low-intensity turbulent flow[J]. Journal of Fluid Mechanics, 2006, 228(228):487-511. http://cn.bing.com/academic/profile?id=7af3354618aef0574a574540cba8b3c8&encoded=0&v=paper_preview&mkt=zh-cn
    [32]
    Tamadonfar Parsa, Gülder ömer L. Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames[J]. Combustion and Flame, 2015, 162(12):4417-4441. DOI: 10.1016/j.combustflame.2015.08.009
  • Cited by

    Periodical cited type(5)

    1. 胡炜,李敬轩,杨立军,张玥,梁炫烨. 不完全角度背景纹影层析测量综述. 火箭推进. 2024(06): 1-26 .
    2. 冯晓鸥,金熠,翟超. 化学发光火焰三维重建研究综述. 实验流体力学. 2023(02): 1-15 . 本站查看
    3. 李响,雷庆春,徐文江,范玮. 基于计算层析成像的火焰三维重建算法研究. 燃烧科学与技术. 2023(06): 660-666 .
    4. 管今哥,卫娜瑛,郑永秋,陈坤. 基于同步共轴结构的辐射层析测温仪设计. 仪器仪表学报. 2023(09): 239-247 .
    5. 娄春,张鲁栋,蒲旸,张仲侬,李智聪,陈鹏飞. 基于自发辐射分析的被动式燃烧诊断技术研究进展. 实验流体力学. 2021(01): 1-17 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (278) PDF downloads (11) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close