Liu Zhen, Kong Weiliang, Liu Hong, Wang Fuxin. Experimental study for effect of mean volumetric diameter on ice adhesion strength[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 35-39. DOI: 10.11729/syltlx20170118
Citation: Liu Zhen, Kong Weiliang, Liu Hong, Wang Fuxin. Experimental study for effect of mean volumetric diameter on ice adhesion strength[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 35-39. DOI: 10.11729/syltlx20170118

Experimental study for effect of mean volumetric diameter on ice adhesion strength

More Information
  • Received Date: September 03, 2017
  • Revised Date: October 22, 2017
  • Ice adhesion strength is the interaction between the ice and the solid substrate. Research about how experimental parameters influence ice adhesion strength is important to the understanding of the mechanism of ice adhesion strength, the developing of anti-ice method and the analysis of the Ice shedding. In the experiments, the same substrate and the liquid water content are used, and the ice adhesion strength is measured at different temperatures (-25~0℃) and different mean volumetric diameters (40, 80 and 250μm). Different from freezer ice, there exists a turning point for impact ice as the pattern of the ice adhesion strength changes due to the variation of temperature, which can be called the critical temperature. As the temperature decreasing from 0℃, above the critical temperature the ice adhesion strength does not depend on whether it is freezer ice or impact ice. But below the critical temperature, the ice adhesion strength of impact ice is lower, with the ice regime transforming from glaze ice to rime ice. The critical temperature changes as the mean volumetric diameter changes, so as the variation trend of the ice adhesion strength.
  • [1]
    Yeong Y H, Athanasios M, Eric L. Atmospheric ice adhesion on water-repellent coatings:wetting and surface topology effects[J]. Langmuir, 2015, 31(48):13107-13116. DOI: 10.1021/acs.langmuir.5b02725
    [2]
    Stefania T, Carlo A, Alidad A, et al. Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades[J].. Cold Regions Science and Technology, 2014, 100:50-58. DOI: 10.1016/j.coldregions.2013.12.009
    [3]
    Jared S, Jose P, Timothy E, et al. Ice adhesion mechanisms of erosion-resistant coatings[J]. AIAA Journal, 2015, 53(3):654-662. DOI: 10.2514/1.J053208
    [4]
    Young T. An essay on the cohesion of fluids[J]. Phil Trans R Soc London, 1805, 95:65-87. DOI: 10.1098/rstl.1805.0005
    [5]
    Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8):988-994. DOI: 10.1021/ie50320a024
    [6]
    Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40:546-551. DOI: 10.1039/tf9444000546
    [7]
    Saito H, Takai K, Yamauchi G. Water-and ice-repellent coatings[J]. Surf Coat Int, 1997, 80(4):168-171. DOI: 10.1007/BF02692637
    [8]
    Stallabrass J R, Price R D. On the adhesion of ice to various materials[J]. National Research Laboratory, Report LR-350, 1962. https://repository.tudelft.nl/view/aereports/uuid:bb12ef2e-c3b2-4d43-aaac-66bcdadde122/
    [9]
    Itagaki K. Mechanical ice release processes I. Self-shedding from high speed rotors[R]. CCREL Report 83-26, 1983. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA135369
    [10]
    Frederic G, Caroline L, Marie-Isabelle F, et al. Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates[J]. Cold Regions Science and Technology, 2016, 121:93-99. DOI: 10.1016/j.coldregions.2015.10.011
    [11]
    Zaid A J. The influence of freezing and ambient temperature on the adhesion strength of ice[J]. Cold Regions Science and Technology, 2017, 140:14-19. DOI: 10.1016/j.coldregions.2017.05.001
    [12]
    Momen G, Jafari R, Farzaneh M. Ice repellency behaviour of superhydrophobic surfaces:effects of atmospheric icing conditions and surface roughness[J]. Appl Surf Sci, 2015, 349:211-218. DOI: 10.1016/j.apsusc.2015.04.180
    [13]
    Zhang C, Liu H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft freezing[J]. Physics of Fluids, 2016:062107. https://www.osti.gov/scitech/biblio/22598959
    [14]
    Laforte C, Laforte J L. How a solid coating can reduce ice adhesion on structures[C]//Proceedings of the 10th International Workshop of Atmospheric Icing of Structures, Brno, Czech Republic, 2002. DOI: 10.1007/s10891-016-1516-3
  • Cited by

    Periodical cited type(4)

    1. 杨欣磊,胡湘洪,李锴,郭振华. DO-160标准B类结冰试验方法应用研究. 电子产品可靠性与环境试验. 2023(02): 92-96 .
    2. 谭其志,苏艳菲. 水闸覆冰提升的ANSYS软件分析研究. 水利规划与设计. 2022(10): 88-91 .
    3. 苏杰,余放. 旋转脱冰试验与数值模拟研究. 南京航空航天大学学报. 2022(06): 1100-1107 .
    4. 陈功,孔维梁,王福新. 铝合金表面静态结冰过程中切向冰附着力的变化. 武汉理工大学学报. 2019(01): 98-104 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (184) PDF downloads (9) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close