Rahman·Hebibul, Wang Hongyan, Xue Fangzheng, Huang Linya, Huang Mimi, Yu Mingzhi, Zhao Libo. High temperature dynamic pressure sensor and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 44-50. DOI: 10.11729/syltlx20170028
Citation: Rahman·Hebibul, Wang Hongyan, Xue Fangzheng, Huang Linya, Huang Mimi, Yu Mingzhi, Zhao Libo. High temperature dynamic pressure sensor and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 44-50. DOI: 10.11729/syltlx20170028

High temperature dynamic pressure sensor and experimental analysis

More Information
  • Received Date: December 19, 2016
  • Revised Date: February 24, 2017
  • The inverted cup-type high-temperature piezoresistive pressure sensitive chip with the range of 25MPa was developed by the Micro Electro-Mechanical Systems (MEMS) and Silicon on Insulator (SOI) technology. The sensitive piezoresistors are isolated from the silicon substrate by the silicon dioxide, and thus the stability and reliability problems of the pressure sensitive chip are solved at high temperatures beyond 120℃. The flush-type mechanical packaging structure was designed to avoid the channeling effect and improve the dynamic response frequency of the sensor. For the fabricated high temperature dynamic pressure sensor, the static and dynamic performance experiments were carried out to obtain the sensor's fundamental performance and analyze its uncertainty at the static experimental temperature of 250℃. The results show that the sensor accuracy is ±0.114%FS and the uncertainty is 0.017 94mV. The thermal zero drift and thermal sensitivity drift were calculated. The dynamic response frequency was calculated as 555.6 kHz through dynamic performance experiment. Therefore, the developed MEMS pressure sensor has fine accuracy and high natural frequency at high temperatures.
  • [1]
    李科杰. 新编传感器技术手册[M]. 北京: 国防工业出版社, 2002: 1-5, 56-96, 1046-1062.

    Li K J. New sensor technology manual[M]. Beijing:National Defense Industry Press, 2002:1-5, 56-96, 1046-1062.
    [2]
    何洪涛, 王伟忠, 杜少博, 等.一种新型MEMS压阻式SiC高温压力传感器[J].微纳电子技术, 2015, 52(4):233-239(255). http://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201504006.htm

    He H T, Wang W Z, Du S B, et al. A novel MEMS piezoresistivity Sic high temperature pressure sensor[J]. Microelectronics & Electron Technology, 2015, 52(4):233-239(255). http://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201504006.htm
    [3]
    郭宏, 王冰, 庄家局, 等.压阻式高频动态高压传感器设计与冲击波超压测量[J].仪表技术与传感器, 2008, 9:1-2(5). DOI: 10.3969/j.issn.1002-1841.2008.01.001

    Guo H, Wang B, Zhuang J J, et al. Silicon piezoresistive high frequency dynamic high pressure sensor and measurement of shock wave superpressure[J]. Instrumentation Technology and Sensor, 2008, 9:1-2(5). DOI: 10.3969/j.issn.1002-1841.2008.01.001
    [4]
    赵立波, 赵玉龙, 李建波, 等.倒杯式耐高温高频响压阻式压力传感器[J].西安交通大学学报, 2010, 44(7):50-54. DOI: 10.7652/xjtuxb201007012

    Zhao L B, Zhao Y L, Li J B, et al. Inverted-cup high-temperature and high-frequency piezoresistive pressure sensor[J]. Journal of Xi'an Jiaotong University, 2010, 44(7):50-54. DOI: 10.7652/xjtuxb201007012
    [5]
    周峰, 孙晋玲, 郭鹏. 单晶硅动态压力传感器的研究[C]. 中国空气动力学会测控专业委员会六届四次空气动力测控技术交流会, 2013.

    Zhou F, Sun J L, Guo P. Research of monocrystalline silicon dynamic pressure sensor[C]. China Aerodynamics Society of the Fourth Professional Committee of the Fourth Aerodynamic Monitoring And Control Technology Exchange, 2013.
    [6]
    王文襄, 王晋林, 李水霞, 等.几种高温高频压力传感器的研制与开发[J].测试技术学报, 2002, 16(zl):413-416.Wang W X, Wang J L, Li S X, et al. http://cdmd.cnki.com.cn/Article/CDMD-10559-2004119391.htm

    Research and development of several high temperature and high frequency pressure sensors[J]. Journal of Test and Measurement Technology, 2002, 16(zl):413-416. http://cdmd.cnki.com.cn/Article/CDMD-10559-2004119391.htm
    [7]
    Julian B. SIMOX (Separation by Implantation Oxygen), encyclopedia of physical science and technology[M]. Encyclopedia of Physical Science and Technology, 2001, 14:805-813.
    [8]
    Michel B, Bernard A, Andre-Jacques Auberton-Hervé. Smart-cut:a new silicon on insulator material technology based on hydrogen implantation and wafer bonding[J]. Jounal of Applied Physics, 1997, 36:1636-1641. https://www.researchgate.net/publication/243734146_Smart-Cut_A_New_Silicon_On_Insulator_Material_Technology_Based_on_Hydrogen_Implantation_and_Wafer_Bonding1
    [9]
    Zhao Y L, Zhao L B, Jiang Z D. High temperature and frequency pressure sensor based on silicon-on-insulator layers[J]. Measurement Science and Technology, 2006, 17:519-523. DOI: 10.1088/0957-0233/17/3/S11
    [10]
    Nisanth A, Suja K J, Komaragiri R. Performance analysis of a silicon piezoresistive pressure sensor based on diaphragm geometry and piezoresistor dimensions[C]. International Conference on Circuit, Power and Computing Technologies, IEEE, 2015:55-67.
    [11]
    Bao M H. Micro mechanical transducers:pressure sensors, accelerometers and gyroscopes[M]. Amsterdam:Elsevier, 2000, 257-262.
    [12]
    Zhao Y L, Zhao L B, Jiang Z D. A novel high temperature pressure sensor on the basis of SOI layers[J]. Sensors and Actuators A:Physical, 2003, 108:108-111. DOI: 10.1016/j.sna.2003.07.011
    [13]
    Niu Z, Zhao Y, Tian B. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity[J]. Review of Scientific Instruments, 2014, 85(1):015001(8pp.). DOI: 10.1063/1.4856455
    [14]
    Hao X, Jiang Y, Takao H, et al. An annular mechanical temperature compensation structure for gas-sealed capacitive pressure sensor[J]. Sensors, 2012, 12(6):8026-38. http://www.oalib.com/paper/171280
    [15]
    Kumar S S, Pant B D. Effect of piezoresistor configuration on output characteristics of piezoresistive pressure sensor:an experimental study[J]. Microsystem Technologies, 2016, 22(4):709-719. DOI: 10.1007/s00542-015-2451-5
    [16]
    Integrate Circuit Edit Committee of China. Integrate circuit package[M]. Beijing:National Defence Industry Press, 1993:193-269.
    [17]
    中国计量测试学会压力专业委员会.压力测量不确定度评定[M].北京:中国计量出版社, 2006:166-210.

    China Society of Metrology and Measurement Pressure Professional Committee. Pressure measurement uncertainty[M]. Beijing:China Metrology Publishing House, 2006:166-210.
    [18]
    张有康, 甘蓉.压力传感器测量中不确定度的评定[J].中国测试技术, 2005, 31(6):25-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200506006.htm

    Zhang Y K, Gan R. Evaluation of strain gauge measurement uncertainty of pressure transducer[J]. China Measurement Technology, 2005, 31(6):25-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200506006.htm
  • Related Articles

    [1]LIU Jingcheng, LIU Jianhua, ZHANG Yongming. Review of flow stability and natural transition of boundary layers on underwater axisymmetric bodies[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 40-51. DOI: 10.11729/syltlx20230103
    [2]CHEN Xiang, ZHAN Jingxia, CHEN Ke, WEI Zhongcheng, CAO Yuan. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 65-72. DOI: 10.11729/syltlx20210143
    [3]LIAN Zhenzeng, ZHANG Hui, YAN Wencheng, KONG Peng. Research on improvement measures of transverse heading of general aircraft based on spoiler[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 34-39. DOI: 10.11729/syltlx20200066
    [4]LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084
    [5]YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. DOI: 10.11729/syltlx20190161
    [6]ZHANG Shiyu, ZHAO Junbo, FU Zengliang, LIANG Bin, ZHOU Jiajian. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. DOI: 10.11729/syltlx20180157
    [7]MENG Xuan-shi, CAI Jin-sheng, LUO Shi-jun, LIU Feng. Effects of low dorsal fin on the stability of vortex flow over slender delta wing[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 45-49. DOI: 10.3969/j.issn.1672-9897.2012.03.008
    [8]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Theoretical research on the aerodynamic stability of super-longspan suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 30-36. DOI: 10.3969/j.issn.1672-9897.2012.01.007
    [9]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Wind tunnel test on the aerodynamic stability of super-long span suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 38-44. DOI: 10.3969/j.issn.1672-9897.2011.06.008
    [10]CHEN Bin. Investigation of improving the lateral static stability for the aircraft applied to high-subsonic flow and high angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 109-112. DOI: 10.3969/j.issn.1672-9897.2005.01.022
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (346) PDF downloads (26) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close