Citation: | Ding Guanghui, Ma Binghe, Deng Jinjun, Yuan Weizheng. Analytical model for structure design of floating element wall shear stress micro-sensor with capacitive sensing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 53-59. DOI: 10.11729/syltlx20170004 |
[1] |
Johansson T G, Medhi F, Naughton J W. Some problems with near-wall measurements and the determination of wall shear stress[J]. AIAA Aerodyn Meas Technol Gr Test Conf, 2006, 2: 1179-1563478110. https://www.researchgate.net/publication/268560710_Some_Problems_with_Near-Wall_Measurements_and_the_Determination_of_Wall_Shear_Stress
|
[2] |
屠恒章, 李建强, 明晓, 等.基于MEMS传感器的高速风洞壁面剪切应力直接测量技术[J].实验流体力学, 2008, 22(3): 94-98. http://www.syltlx.com/CN/abstract/abstract9657.shtml
Tu H Z, Li J Q, Ming X, et al. Direct measurement technique of wall shear stress using MEMS sensors in a high-speed wind tunnel[J]. Journal of Experiemnts in Fluid Mechanics, 2008, 22(3): 94-98. http://www.syltlx.com/CN/abstract/abstract9657.shtml
|
[3] |
Naughton J W, Sheplak M. Modern developments in shear stress measurement[J]. Prog Aerosp Sci, 2002, 38: 515-570. DOI: 10.1016/S0376-0421(02)00031-3
|
[4] |
Onsrud G, Persen L N, Saetran L R. On the measurement of wall shear stress[J]. Expt Fluids, 1987, 5: 11-16. DOI: 10.1007/BF00272418
|
[5] |
Ma B, Li Y, Wang L, et al. Modelling and calibration of microthermal sensor for underwater wall shear stress measurement[J]. Micro & amp; Nano Lett, 2014, 9(7): 486-489. https://www.researchgate.net/publication/275514855_Modelling_and_calibration_of_microthermal_sensor_for_underwater_wall_shear_stress_measurement
|
[6] |
Chandrasekharan V, Sells J, Meloy J, et al. A microscale di-fferential capacitive direct wall-shear-stress sensor[J]. J Microelectromechanical Syst, 2011, 20(3): 622-635. DOI: 10.1109/JMEMS.2011.2140356
|
[7] |
Chandrasekharan V, Sells J, Arnold D P, et al. Characterization of a MEMS-based floating element shear stress sensor[J]. AIAA Aerosp Sci Meet, 2009: 1-11. https://www.researchgate.net/publication/269061763_Characterization_of_a_MEMS-Based_Floating_Element_Shear_Stress_Sensor
|
[8] |
Lyu H, Jiang C, Xiang Z, et al. Design of a micro floating element shear stress sensor[J]. Flow Meas Instrum, 2013, 30: 66-74. DOI: 10.1016/j.flowmeasinst.2012.11.004
|
[9] |
Seo D, Kwon S, Bae N, et al. MEMS wall shear stress sensor for real time onboard monitoring of flow separation over a wing surface[C]. 51st AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo, 2013: 1-8.
|
[10] |
Ma B H, Ma C Y. A MEMS surface fence for wall shear stress measurement with high sensitivity[J]. Microsyst Technol, 2016, 22(2): 239-246. DOI: 10.1007/s00542-015-2450-6
|
[11] |
Sullivan D J, Kline J F, Salamon M. An optically interrogated, microfabricated pillar array for wall shear stress sensing[C]. 50th AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo, 2012: 1-12.
|
[12] |
Chen T A, Mills D, Chandrasekharan V, et al. A miniaturized optical package for wall shear stress measurements in harsh environments[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2014, 6113: 91130G.
|
[13] |
Ayaz U K, Ioppolo T, Ötügen V. High resolution micro-optical wall shear stress sensor[J]. AIAA Aerosp Sci Meet, 2011: 1-9. DOI: 10.2514/6.2011-337
|
[14] |
Schmidt A. Design and calibration of a microfabricated floating-element shear-stress sensor[J]. IEEE Trans Electron Devices, 1988, 35(6): 750-757. DOI: 10.1109/16.2527
|
[15] |
Pan T, Hyman D, Mehregany M, et al. Microfabricated shear stress sensors, Part 1: design and fabrication shear stress and its measurement[J]. AIAA J, 1999, 37(1): 66-72. DOI: 10.2514/2.665
|
[16] |
Zhao Z, Shin M, Gallman J M, et al. A microfabricated shear sensor array on a chip with pressure gradient calibration[J]. Sensors Actuators, A Phys, 2014, 205: 133-142. DOI: 10.1016/j.sna.2013.11.002
|
[17] |
Desai A V, Haque M A. Design and fabrication of a direction sensitive MEMS shear stress sensor with high spatial and temporal resolution[J]. J Micromechanics Microengineering, 2004, 14: 1718-1725. DOI: 10.1088/0960-1317/14/12/017
|
[18] |
Khankhua S, Ashraf M W, Tayyaba S, et al. Simulation of MEMS based Micro-Gyroscope using coventor ware[J]. Circuits Syst Adv Technol, 2011: 22-25. https://www.researchgate.net/publication/241185257_Simulation_of_MEMS_based_micro-gyroscope_using_CoventorWare
|
[19] |
Anadkat N, Rangachar J S. Simulation based analysis of capacitive pressure sensor with COMSOL multiphysics[J]. Int J Eng Res Technol. (IJERT), 2015, 4(4): 848-852. https://www.researchgate.net/publication/277359851_Simulation_based_Analysis_of_Capacitive_Pressure_Sensor_with_COMSOL_Multiphysics
|
[20] |
吕海峰, 姜澄宇, 邓进军, 等.用于壁面切应力测量的微传感器设计[J].机械工程学报, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm
Lyu H F, Jiang C Y, Deng J J, et al. Design of micro sensor for wall shear stress measurement[J]. Journal of Mechanical Engineering, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm
|
[21] |
Legtenberg R, Groeneveld A W, Elwenspoek M. Comb-drive actuators for large displacements[J]. J Micromechanics Microengineering, 1996, 6(3): 320-329. DOI: 10.1088/0960-1317/6/3/004
|
[22] |
Zhou G, Dowd P. Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators[J]. J Micromechanics Microengineering, 2002, 13(2): 178-183. http://stacks.iop.org/0960-1317/13/i=2/a=303?key=crossref.28388f42a3dd95119e4e480e5bfcad56
|
[23] |
Sheplak M, Padmanabhan A, Schmidt M A, et al. Dynamic calibration of a shear-stress sensor using stokes-layer excitation[J]. AIAA J, 2001, 39(5): 819-823. DOI: 10.2514/2.1415
|
1. |
段鹏宇,陈曦. 壁湍流的复合减阻及能流分析. 实验流体力学. 2024(04): 1-10 .
![]() | |
2. |
管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 .
![]() | |
3. |
张宇,唐湛棋,崔晓通,姜楠. 壁面局部动态扰动作用下湍流边界层多尺度相互作用. 气体物理. 2024(05): 19-29 .
![]() |