Ding Guanghui, Ma Binghe, Deng Jinjun, Yuan Weizheng. Analytical model for structure design of floating element wall shear stress micro-sensor with capacitive sensing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 53-59. DOI: 10.11729/syltlx20170004
Citation: Ding Guanghui, Ma Binghe, Deng Jinjun, Yuan Weizheng. Analytical model for structure design of floating element wall shear stress micro-sensor with capacitive sensing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 53-59. DOI: 10.11729/syltlx20170004

Analytical model for structure design of floating element wall shear stress micro-sensor with capacitive sensing

More Information
  • Received Date: December 12, 2016
  • Revised Date: May 18, 2017
  • The capacitive sensor with a micro floating element can measure the wall shear stress in the flow boundary layer directly. The sensor output voltage is linear to the applied wall shear stress and it is much more precise than conventional methods. We built up the analytical model for the sensor design by studying how structural parameters influence the sensor performances. The sensor consists of a floating element, folded tethers, movable comb fingers, fixed comb fingers and anchors, etc. And the sensor performances include measurement range, natural frequency, nonlinearity, sensitivity and resolution. The relationships between structural parameters and sensor performances are clarified explicitly by the analytical model. And the micro-sensor design becomes much easier and more efficient. Static and dynamic calibration were carried out and the results indicate a good agreement with predictions of the analytical model.
  • [1]
    Johansson T G, Medhi F, Naughton J W. Some problems with near-wall measurements and the determination of wall shear stress[J]. AIAA Aerodyn Meas Technol Gr Test Conf, 2006, 2: 1179-1563478110. https://www.researchgate.net/publication/268560710_Some_Problems_with_Near-Wall_Measurements_and_the_Determination_of_Wall_Shear_Stress
    [2]
    屠恒章, 李建强, 明晓, 等.基于MEMS传感器的高速风洞壁面剪切应力直接测量技术[J].实验流体力学, 2008, 22(3): 94-98. http://www.syltlx.com/CN/abstract/abstract9657.shtml

    Tu H Z, Li J Q, Ming X, et al. Direct measurement technique of wall shear stress using MEMS sensors in a high-speed wind tunnel[J]. Journal of Experiemnts in Fluid Mechanics, 2008, 22(3): 94-98. http://www.syltlx.com/CN/abstract/abstract9657.shtml
    [3]
    Naughton J W, Sheplak M. Modern developments in shear stress measurement[J]. Prog Aerosp Sci, 2002, 38: 515-570. DOI: 10.1016/S0376-0421(02)00031-3
    [4]
    Onsrud G, Persen L N, Saetran L R. On the measurement of wall shear stress[J]. Expt Fluids, 1987, 5: 11-16. DOI: 10.1007/BF00272418
    [5]
    Ma B, Li Y, Wang L, et al. Modelling and calibration of microthermal sensor for underwater wall shear stress measurement[J]. Micro & amp; Nano Lett, 2014, 9(7): 486-489. https://www.researchgate.net/publication/275514855_Modelling_and_calibration_of_microthermal_sensor_for_underwater_wall_shear_stress_measurement
    [6]
    Chandrasekharan V, Sells J, Meloy J, et al. A microscale di-fferential capacitive direct wall-shear-stress sensor[J]. J Microelectromechanical Syst, 2011, 20(3): 622-635. DOI: 10.1109/JMEMS.2011.2140356
    [7]
    Chandrasekharan V, Sells J, Arnold D P, et al. Characterization of a MEMS-based floating element shear stress sensor[J]. AIAA Aerosp Sci Meet, 2009: 1-11. https://www.researchgate.net/publication/269061763_Characterization_of_a_MEMS-Based_Floating_Element_Shear_Stress_Sensor
    [8]
    Lyu H, Jiang C, Xiang Z, et al. Design of a micro floating element shear stress sensor[J]. Flow Meas Instrum, 2013, 30: 66-74. DOI: 10.1016/j.flowmeasinst.2012.11.004
    [9]
    Seo D, Kwon S, Bae N, et al. MEMS wall shear stress sensor for real time onboard monitoring of flow separation over a wing surface[C]. 51st AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo, 2013: 1-8.
    [10]
    Ma B H, Ma C Y. A MEMS surface fence for wall shear stress measurement with high sensitivity[J]. Microsyst Technol, 2016, 22(2): 239-246. DOI: 10.1007/s00542-015-2450-6
    [11]
    Sullivan D J, Kline J F, Salamon M. An optically interrogated, microfabricated pillar array for wall shear stress sensing[C]. 50th AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo, 2012: 1-12.
    [12]
    Chen T A, Mills D, Chandrasekharan V, et al. A miniaturized optical package for wall shear stress measurements in harsh environments[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2014, 6113: 91130G.
    [13]
    Ayaz U K, Ioppolo T, Ötügen V. High resolution micro-optical wall shear stress sensor[J]. AIAA Aerosp Sci Meet, 2011: 1-9. DOI: 10.2514/6.2011-337
    [14]
    Schmidt A. Design and calibration of a microfabricated floating-element shear-stress sensor[J]. IEEE Trans Electron Devices, 1988, 35(6): 750-757. DOI: 10.1109/16.2527
    [15]
    Pan T, Hyman D, Mehregany M, et al. Microfabricated shear stress sensors, Part 1: design and fabrication shear stress and its measurement[J]. AIAA J, 1999, 37(1): 66-72. DOI: 10.2514/2.665
    [16]
    Zhao Z, Shin M, Gallman J M, et al. A microfabricated shear sensor array on a chip with pressure gradient calibration[J]. Sensors Actuators, A Phys, 2014, 205: 133-142. DOI: 10.1016/j.sna.2013.11.002
    [17]
    Desai A V, Haque M A. Design and fabrication of a direction sensitive MEMS shear stress sensor with high spatial and temporal resolution[J]. J Micromechanics Microengineering, 2004, 14: 1718-1725. DOI: 10.1088/0960-1317/14/12/017
    [18]
    Khankhua S, Ashraf M W, Tayyaba S, et al. Simulation of MEMS based Micro-Gyroscope using coventor ware[J]. Circuits Syst Adv Technol, 2011: 22-25. https://www.researchgate.net/publication/241185257_Simulation_of_MEMS_based_micro-gyroscope_using_CoventorWare
    [19]
    Anadkat N, Rangachar J S. Simulation based analysis of capacitive pressure sensor with COMSOL multiphysics[J]. Int J Eng Res Technol. (IJERT), 2015, 4(4): 848-852. https://www.researchgate.net/publication/277359851_Simulation_based_Analysis_of_Capacitive_Pressure_Sensor_with_COMSOL_Multiphysics
    [20]
    吕海峰, 姜澄宇, 邓进军, 等.用于壁面切应力测量的微传感器设计[J].机械工程学报, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm

    Lyu H F, Jiang C Y, Deng J J, et al. Design of micro sensor for wall shear stress measurement[J]. Journal of Mechanical Engineering, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm
    [21]
    Legtenberg R, Groeneveld A W, Elwenspoek M. Comb-drive actuators for large displacements[J]. J Micromechanics Microengineering, 1996, 6(3): 320-329. DOI: 10.1088/0960-1317/6/3/004
    [22]
    Zhou G, Dowd P. Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators[J]. J Micromechanics Microengineering, 2002, 13(2): 178-183. http://stacks.iop.org/0960-1317/13/i=2/a=303?key=crossref.28388f42a3dd95119e4e480e5bfcad56
    [23]
    Sheplak M, Padmanabhan A, Schmidt M A, et al. Dynamic calibration of a shear-stress sensor using stokes-layer excitation[J]. AIAA J, 2001, 39(5): 819-823. DOI: 10.2514/2.1415
  • Cited by

    Periodical cited type(3)

    1. 段鹏宇,陈曦. 壁湍流的复合减阻及能流分析. 实验流体力学. 2024(04): 1-10 . 本站查看
    2. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    3. 张宇,唐湛棋,崔晓通,姜楠. 壁面局部动态扰动作用下湍流边界层多尺度相互作用. 气体物理. 2024(05): 19-29 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (225) PDF downloads (15) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close