Chen Pei, Zhao Yulong, Tian Bian. Design and development of MEMS based beam-membrane structure flow sensor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 34-38. DOI: 10.11729/syltlx20170001
Citation: Chen Pei, Zhao Yulong, Tian Bian. Design and development of MEMS based beam-membrane structure flow sensor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 34-38. DOI: 10.11729/syltlx20170001

Design and development of MEMS based beam-membrane structure flow sensor

More Information
  • Received Date: December 11, 2016
  • Revised Date: February 23, 2017
  • Flow is one of the important parameters in industrial detection. With the development and application of the Micro Electro-Mechanical Systems (MEMS) technology, flow detection is developing towards miniaturization, high precision and intelligence. A MEMS beam-membrane structure based differential pressure flow sensor is designed, and its working principle is analyzed. The sensor is fabricated by the silicon micromachining technology, and then the airflow test and water flow test are conducted. The sensitivity by the airflow test is 0.3508mV/(ms-1)2 and the basic accuracy is 0.5885%FS. The sensitivity by the water flow test is 41.5241mV/(ms-1)2 and the basic accuracy is 0.9323%FS. The results show that the designed sensor has sufficient sensitivity and basic accuracy for the flow measurement.
  • [1]
    Schena E, Massaroni C, Saccomandi P, et al. Flow measurement in mechanical ventilation:a review[J]. Medical Engineering & Physics, 2015, 37(3):257-264. http://www.academia.edu/13717799/Flow_measurement_in_mechanical_ventilation_A_review
    [2]
    蔡武昌.从FLOMEKO 2010看流量测量技术和仪表的发展[J].石油化工自动化, 2011, (05):1-4. DOI: 10.3969/j.issn.1007-7324.2011.05.001

    Cai W C. View of flow measurement technology and instrument development from FLOMEKO 2010[J]. Automation in Petro-chemical Industry, 2011, (05):1-4. DOI: 10.3969/j.issn.1007-7324.2011.05.001
    [3]
    Worsfold P J, Clough R, Lohan M C, et al. Flow injection analysis as a tool for enhancing oceanographic nutrient measurements-a review[J]. Analytica Chimica Acta, 2013, 803:15-40. DOI: 10.1016/j.aca.2013.06.015
    [4]
    Nguyen N T. Micromachined flow sensors-a review[J]. Flow Measurement and Instrumentation, 1997, 8(1):7-16. DOI: 10.1016/S0955-5986(97)00019-8
    [5]
    Zhou L X. A review of measurements and numerical studies for the effect of wall roughness on the gas-particle flow behavior[C]. 8th International Symposium on Measurement Techniques for Multiphase Flows, 2014:115-120.
    [6]
    彭杰纲, 周兆英, 叶雄英.基于MEMS技术的微型流量传感器的研究进展[J].力学进展, 2005, (03):361-376. DOI: 10.3321/j.issn:1000-0992.2005.03.007

    Peng J G, Zhou Z Y, Ye X Y. Progresses on micromachined flow sensors based on mems technology[J]. Advances in Mechanics, 2005, (03):361-376. DOI: 10.3321/j.issn:1000-0992.2005.03.007
    [7]
    Kuo J T W, Yu L, Meng E. Micromachined thermal flow sensors-a review[J]. Micromachines, 2012, 3(3):550-573. http://www.oalib.com/paper/159573
    [8]
    Nawi M N M, Abd M A, Arshad M R, et al. Review of MEMS flow sensors based on artificial hair cell sensor[J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2011, 17(9):1417-1426. DOI: 10.1007/s00542-011-1330-y
    [9]
    Ozaki Y, Ohyama T, Yasuda T, et al. Air flow sensor modeled on wind receptor hairs of insects[J]. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 2000:531-536. http://www.oalib.com/references/9041807
    [10]
    Ma R H, Chou P C, Wang Y H, et al. A microcantilever-based gas flow sensor for flow rate and direction detection[J]. Micro-system Technologies Micro and Nano systems Information Storage and Processing Systems, 2009, 15(8):1201-1205. http://www.oalib.com/paper/4086488
    [11]
    Richter M, Wackerle M, Woias P, et al. A novel flow sensor with high time resolution based on differential pressure principle[C]. MEMS 99:Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, New York, 1999:118-123.
    [12]
    Chen P, Zhao Y L, Tian B A, et al. Design and fluid-structure interaction analysis of a micromachined cantilever-based differential pressure flow sensor[J]. Micro & Nano Letters, 2014, 9(10):650-654.
    [13]
    Chen P, Zhao Y L, Li Y Y. Design, simulation and fabrication of a micromachined cantilever-based flow sensor[C]. 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2013:681-684.
    [14]
    Fitzpatrick JAJ, Inouye Y, Manley S, et al. From "there's plenty of room at the bottom" to seeing what is actually there[J]. Chemphyschem, 2014, 15(4):547-549. DOI: 10.1002/cphc.201400097
    [15]
    Stylios G K. There is plenty of room at the bottom, RP Feynman[J]. International Journal of Clothing Science and Technology, 2013, 25(5):336-337. http://www.nanoparticles.org/pdf/Feynman.pdf
    [16]
    SD S. MEMS materials and processes handbook[M]. New York:Springer, 2011.
    [17]
    Erdmann A, Liang R G, Sezginer A, et al. Advances in lithography:introduction to the feature[J]. Applied Optics, 2014, 53(34):L1-L2.
    [18]
    Mendaros R G, Marcelo M T. ICP-RIE platinum (Pt) sputter etching[C]. 2014 IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2014:114-117.
  • Cited by

    Periodical cited type(3)

    1. 段鹏宇,陈曦. 壁湍流的复合减阻及能流分析. 实验流体力学. 2024(04): 1-10 . 本站查看
    2. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    3. 张宇,唐湛棋,崔晓通,姜楠. 壁面局部动态扰动作用下湍流边界层多尺度相互作用. 气体物理. 2024(05): 19-29 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close