Xiao Zhongyun, Jiang Xiong, Mou Bin, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15. doi: 10.11729/syltlx20160207
Citation: Xiao Zhongyun, Jiang Xiong, Mou Bin, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15. doi: 10.11729/syltlx20160207

Advances influidic thrust vectoring technique research

doi: 10.11729/syltlx20160207
  • Received Date: 2016-12-22
  • Rev Recd Date: 2017-04-20
  • Publish Date: 2017-08-25
  • In contrast to the mechanical deflecting nozzle, the fluidic thrust vectoring control hires flow control methods to realize the jet vectoring, which is expected to be a more efficient way to manipulate the thrust direction. Among the main fluidic vectoring control methods, including shock vectoring control(SVC), dual throat nozzle(DTN), counter-flow(CC) and co-flow control, performance parameters such as the thrust vectoring efficiency, the thrust ratio and the discharge coefficient are compared based on published experimental and computational data. It shows that SVC, DTN and CC methods produce thrust vectoring in a wide range of Nozzle Pressure Ratio(NPR) from 1.8 to 10, and are extendable to pitch/yaw control or multi-axis control. Comparatively, DTN and co-flow control are superior to SVC and CC in the thrust loss and thrust vectoring efficiency, yet DTN is disadvantageous in the discharge coefficient as a consequence of throat injection, and the working range of co-flow method is highly limited. In pursuit of highly efficient control, some new methods of jet vectoring are introduced, and the principles, potential advantages and challenges of each method are discussed. These methods adopt after-deck-flow control and introduce little disturbance to the main jet, which are desirable for the thrust vectoring control. Such methods show promising prospects and the related experience should be drawn on for further studies.
  • loading
  • [1]
    Bowers A H, Pahle J W. Thrust vectoring on the NASA F-18 high alpha research vehicle[R]. NASA Technical Memorandum 4771, 1996.
    [2]
    Kowal H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal, 2002, 48(2):145-151. doi: 10.5589/q02-020
    [3]
    Deere K A. Summary of fluidic thrust vectoring research conducted at NASA langley research center[R]. AIAA-2003-3800, 2003.
    [4]
    连永久.射流推力矢量控制技术研究[J].飞机设计, 2008, 28(2):19-24. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201512001157.htm

    Lian Y J. Fluidic thrust vectoring techniques research[J]. Aircraft Design, 2008, 28(2):19-24. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201512001157.htm
    [5]
    宋亚飞, 高峰, 何至林.流体推力矢量技术[J].飞航导弹, 2010, (11):72-75. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211004.htm
    [6]
    Wing D J. Static investigation of two fluidic thrust-vectoring concepts on a two dimensional convergent-divergent nozzle[R]. NASA Technical Memorandum 4574, 1995.
    [7]
    Deere K A. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[R]. AIAA-2000-3598, 2000.
    [8]
    Giuliano V J, Wing D J. Static investigation of a fixed-aperture nozzle employing fluidic injection for multiaxis thrust vector control[R]. AIAA-1997-3149, 1997.
    [9]
    Wing D J, Giuliano V J. Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static conditions[R]. FEDSM97-3228, 1997.
    [10]
    Shi J W, Wang Z X, Zhang X B, et al. Performance estimation for fluidic thrust vectoring nozzle coupled with aero-engine[R]. AIAA-2014-3771, 2014.
    [11]
    Miller D N, Yagle P J, Hamstra J W. Fluidic throat skewing for thrust vectoring in fixed geometry nozzles[R]. AIAA-99-16262, 1999.
    [12]
    Deere K A, Berrier B L, Flamm J D, et al. Computational study of fluidic thrust vectoring using separation control in a nozzle[R]. AIAA-2003-3803, 2003.
    [13]
    Deere K A, Flamm J D, Berrier B L, et al. Computational study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application[R]. AIAA-2007-5085, 2007.
    [14]
    Flamm J D, Deere K A, Berrier B L, et al. Experimental study of a dual-throat fluidic thrust-vectoring nozzle concept[R]. AIAA-2005-3503, 2005.
    [15]
    Flamm J D, Deere K A, Mason M L, et al. Design enhancements of the two-dimensional, dual throat fluidic thrust vectoring nozzle concept[R]. AIAA-2006-3701, 2006.
    [16]
    Flamm J D, Deere K A, Mason M L, et al. Experimental study of an axisymmetric dual throat fluidic thrust vectoring nozzle for supersonic aircraft application[R]. AIAA-2007-5084, 2007.
    [17]
    谭慧俊, 陈智.二元双喉道射流推力矢量喷管的数值模拟研究[J].航空动力学报, 2007, 22(10):1678-1684. doi: 10.3969/j.issn.1000-8055.2007.10.016

    Tan H J, Chen Z. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power, 2007, 22(10):1678-1684. doi: 10.3969/j.issn.1000-8055.2007.10.016
    [18]
    吴正科, 杨青真, 施永强, 等.基于RBF和PSO的双喉道气动矢量喷管优化设计[J].推进技术, 2013, 34(4):451-456. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304005.htm

    Wu Z K, Yang Q Z, Shi Y Q, et al. Optimization design of the dual throat fluidic thrust vectoring nozzle based on RBF and PSO[J]. Journal of Propulsion Technology, 2013, 34(4):451-456. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304005.htm
    [19]
    Hunter C A, Deere K A. Computational investigation of fluidic counterflow thrust vectoring[R]. AIAA-99-2669, 1999.
    [20]
    Flamm J D. Experimental study of a nozzle using fluidic counterflow for thrust vectoring[R]. AIAA-1998-3255, 1998.
    [21]
    Strykowski P J, Krothapalli A, Forliti D J. Counterflow thrust vectoring of supersonic jets[J]. AIAA Journal, 1996, 34(11):2306-2314. doi: 10.2514/3.13395
    [22]
    Alvi F S, Strykowski P J. Forward flight effects on counterflow thrust vector control of a supersonic jet[J]. AIAA Journal, 2015, 37(2):279-281.
    [23]
    Strykowski P J. An experimentallmodeling study of jet attachment during counterflow thrust vectoring[R]. NASA-CR-204436, 1996.
    [24]
    Hunter C A. Experimental, theoretical, and computqational investigation of separated nozzle flows[R]. AIAA-98-3107, 1998.
    [25]
    Mason M S, Crowther W J. Fluidic thrust vectoring for low observable air vehicles[R]. AIAA-2004-2210, 2004.
    [26]
    Banazadeh A, Saghafi F, Ghoreyshi M, et al. Multi-directional co-flow fluidic thrust vectoring intended for a small gas turbine[R]. AIAA-2007-2940, 2007.
    [27]
    Fielding J P, Smith H. FLAVⅡR, an innovative university/industry research program for collaborative research and demonstration of UAV technologies[C]. 25th International Congress of the Aeronautical Sciences, 2006.
    [28]
    Abbasi A Y, Clarke A, Lawson C P, et al. Design and development of the eclipse and demon demonstrator UAVs[C]. 26th International Congress of The Aeronautical Sciences, 2008.
    [29]
    Fielding J P, Lawson C P, Pires R, et al. Development of the demon technology demonstrator UAV[C]. 27th International Congress of The Aeronautical Sciences, 2010.
    [30]
    Gill K, Wilde P, Gueroult R, et al. Development of an integrated propulsion and pneumatic power supply system for flapless UAVs[R]. AIAA-2007-7726, 2007.
    [31]
    Heo J Y, Yoo K H, Lee Y, et al. Fluidic thrust vector control of supersonic jet using co-flow injection[R]. AIAA-2009-5174, 2009.
    [32]
    Lamb M, Taylor J G, Frassinelli M C. Static internal performance of a two dimensional convergent divergent nozzle with external shelf[R]. NASA Technical Memorandum 4719, 1996.
    [33]
    Smith B L, Glezer A. Vectoring and small-scale motions effected in free shear flows usin synthetic jet actuators[R]. AIAA-97-0213, 1997.
    [34]
    夏智勋, 罗振兵.合成射流激励器射流矢量控制的物理因素[J].应用数学和力学, 2007, 28(7):811-823. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200707010.htm

    Xia Z X, Luo Z B. Physical factors of a primary jet vectoring control using synthetic jet actuators[J]. Applied Mathematics and Mechanics, 2007, 28(7):811-823. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200707010.htm
    [35]
    罗振兵, 夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展, 2005, 35(2):221-234. doi: 10.6052/1000-0992-2005-2-J2004-044

    Luo Z B, Xia Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2):221-234. doi: 10.6052/1000-0992-2005-2-J2004-044
    [36]
    Park L G, Seifert A. Periodic excitation for jet vectoring and enhanced spreading[J]. Journal of Aircraft, 2001, 38(3):486-495. doi: 10.2514/2.2788
    [37]
    Trancossi M, Dumas A, Vucinic D. Mathematical modeling of coanda effect[R]. SAE Technical Paper 2013-01-2195, 2013.
    [38]
    Trancossi M, Dumas A, Das S S, et al. Design methods of Coanda effect nozzle with two streams[J]. INCAS Bulletin, 2014, 6(1):83-95. doi: 10.13111/2066-8201
    [39]
    Sunol A, Vucinic D. Numerical analysis and UAV application of the ACHEON thrust vectoring nozzle[R]. AIAA-2014-2046, 2014.
    [40]
    吴云, 李应红.等离子体流动控制研究进展与展望[J].航空学报, 2015, 36(2):381-405. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm

    Wu Y, Li Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica Et Astronautica Sinica, 2015, 36(2):381-405. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm
    [41]
    Sinha A, Alkandry H, Fischer M K, et al. The impulse response of a high-speed jet forced with localized arc filament plasma actuators[J]. Physics of Fluids, 2012, 24(12):1-20. http://authors.library.caltech.edu/36737/
    [42]
    肖中云, 顾蕴松, 江雄, 等.一种基于引射效应的流体推力矢量新技术[J].航空学报, 2012, 33(11):1967-1974. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211004.htm

    Xiao Z Y, Gu Y S, Jiang X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1967-1974. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211004.htm
    [43]
    Ozgu M R, Stenning A H. Switching dynamics of bistable fluid amplifiers[R]. AD72383, 1971.
    [44]
    曹永飞, 顾蕴松, 程克明, 等.基于被动二次流的射流偏转比例控制[J].航空学报, 2015, 36(3):757-762. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503006.htm

    Cao Y F, Gu Y S, Cheng K M, et al. Proportional control of jet deflection with passive secondary flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):757-762. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503006.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (551) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return