Lei Pengxuan, Wang Yuanjing, Lyu Binbin, Yu Li, Yang Zhenhua. Application of a smart material structure in the study of aerodynamic characteristics of a morphing wing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 74-80. DOI: 10.11729/syltlx20160166
Citation: Lei Pengxuan, Wang Yuanjing, Lyu Binbin, Yu Li, Yang Zhenhua. Application of a smart material structure in the study of aerodynamic characteristics of a morphing wing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 74-80. DOI: 10.11729/syltlx20160166

Application of a smart material structure in the study of aerodynamic characteristics of a morphing wing

More Information
  • Received Date: October 31, 2016
  • Revised Date: January 13, 2017
  • In order to verify the feasibility and deformation capability of the intelligent material structure in the study on aerodynamic characteristics of the flexible variable trailing edge wing, the videogrammetric model deformation technique is used to measure the deflection of the trailing edge in the transonic wind tunnel, and the dynamic process of deflection is recorded. The pressure distribution on the upper wing surface is also measured. The Mach number is between 0.4 and 0.8, and the model's angle of attack is between 0° and 6°. The influence of flow condition on the structure deformation is analyzed. The test result shows that the flexible structure of the model can bear the aerodynamic load of the transonic flow and achieve the deflection. When the driving force is constant, the deformation is influenced by the Mach number and the angle of attack. The increase of Mach number weakens the deformation ability of the intelligent structure, which leads to the decrease of the deformation speed and the decrease of the trailing edge deflection angle. The influence of the angle of attack is more complex, and couples with the influence of the Mach number. The higher the Mach number, the stronger the influence of attack angle. Finally, through the analysis of the pressure distribution, it is concluded that the flow separation is the key factor to influence the deformation capacity of the intelligent material structure.
  • [1]
    Wlezien R W, Horner G C, McGowan A M R, et al. Aircraft morphing program[C]//5th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 1998:176-187.
    [2]
    Kudva J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4):261-267. DOI: 10.1177/1045389X04042796
    [3]
    Kudva J N, Jardine A P, Martin C A, et al. Overview of the ARPA/WL smart structures and materials development-smart wing contract[C]//1996 Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 1996:10-16.
    [4]
    Martin C A, Jasmin L, Flanagan J, et al. Smart wing wind tunnel model design[C]//Proc SPIE, 1997, 3044:41-47.
    [5]
    Scherer L B, Martin C A, Appa K, et al. Smart wing wind tunnel test results[C]//Smart Structures and Materials'97, International Society for Optics and Photonics, 1997:56-66.
    [6]
    Scherer L B, Martin C A, West M N, et al. DARPA/ARFL/NASA Smart Wing second wind tunnel test results[C]//1999 Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 1999:249-259.
    [7]
    Precup N, Mor M, Livne E. Design, construction, and tests of an aeroelastic wind tunnel model of a variable camber continuous trailing edge flap (VCCTEF) concept wing[R]. AIAA-2014-2442, 2014.
    [8]
    Precup N, Mor M, Livne E. The design, construction, and tests of a concept aeroelastic wind tunnel model of a high-lift variable camber continuous trailing edge flap (HL-VCCTEF) wing configuration[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015. doi:10.2514/6.2015-1406.
    [9]
    Ting E, Dao T, Nguyen N. Aerodynamic load analysis of a variable camber continuous trailing edge flap system on a flexible wing aircraft[C]//56th AIAA/ASCE/AHS/ASC Struc-tures, Structural Dynamics, and Materials Conference, 2015. doi:10.2514/6.2015-1839.
    [10]
    陶宝祺.智能材料结构[M].北京:国防工业出版社, 1997.

    Tao B Q. Intelligent material structure[M]. Beijing:National Defence Industry Press, 1997.
    [11]
    Icardi U, Ferrero L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators[J]. Materials & Design, 2009, 30(10):4200-4210. https://www.researchgate.net/publication/223715078_Preliminary_study_of_an_adaptive_wing_with_shape_memory_alloy_torsion_actuators
    [12]
    Brailovski V, Terriault P, Georges T, et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10(12):197-203. https://www.researchgate.net/profile/Daniel_Coutu2/publication/251709682_SMA_Actuators_for_Morphing_Wings/links/561e6d1908aecade1accb598/SMA-Actuators-for-Morphing-Wings.pdf
    [13]
    Coutu D, Brailovski V, Terriault P. Optimized design of an active extrados structure for an experimental morphing laminar wing[J]. Aerospace Science & Technology, 2010, 14(7):451-458. https://www.researchgate.net/publication/222536394_Optimized_design_of_an_active_extrados_structure_for_an_experimental_morphing_laminar_wing
    [14]
    陈钱, 白鹏, 尹维龙, 等.可连续光滑偏转后缘的变弯度翼型气动特性分析[J].空气动力学学报, 2010, 28(1):46-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htm

    Chen Q, Bai P, Ying W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htm
    [15]
    杨媛, 徐志伟.基于SMA的飞行器变体机翼驱动结构研究[J].兵器材料科学与工程, 2010, 33(1):25-30. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201001014.htm

    Yang Y, Xu Z W. Research of the wing structure based on a shape-memory alloy actuated morphing wing[J]. Ordnance Material Science and Engineering, 2010, 33(1):25-30. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201001014.htm
    [16]
    刘俊兵, 王帮峰, 芦吉云, 等.基于SMA的差动式变体机翼后缘驱动器研究[J].兵器材料科学与工程, 2015, 38(4):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201504005.htm

    Liu J B, Wang B F, Lu J Y, et al. Differential SMA actuator in trailing edge of morphing wing[J]. Ordnance Material Science and Engineering. 2015, 38(4):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201504005.htm
    [17]
    Burner A W, Liu T. Videogrammetric model deformation measurement technique[J]. Journal of Aircraft, 2001, 38(4):745-754. DOI: 10.2514/2.2826
  • Related Articles

    [1]LI Yong. Progress of research on airfoil trailing edge tonal noise at low-moderate Reynolds number and its control[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 38-49. DOI: 10.11729/syltlx20230062
    [2]ZHAO Bo, CHEN Zhenhua, LI Weimin, CHEN Jiming, ZHU Bo, WEN Qian. Flow characteristics experiment of plate-fin heat exchanger in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 69-76. DOI: 10.11729/syltlx20210081
    [3]CHEN Zhenhua, LIU Zongzheng, CHEN Jiming, GUO Shouchun, YAN Xiqiang, PEI Haitao. Characteristics and key technology analysis of large continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 62-68. DOI: 10.11729/syltlx20210092
    [4]QU Xiaoli, LIU Qin, ZHU Bo, NIE Xutao, WANG Chao. Experimental research and analysis of gust generator for low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 99-105. DOI: 10.11729/syltlx20200114
    [5]LI Qingli, MENG Fanmin, LI Xinglong, ZHANG Ren, CUI Xiaochun. Research on the calculation of pressure loss in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 71-78. DOI: 10.11729/syltlx20190139
    [6]LIU Qin, ZHANG Guobiao, ZHANG Zhifeng, ZHANG Cheng. Experimental research of special perforated wall test section for transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 103-108. DOI: 10.11729/syltlx20190073
    [7]LI Wenjian, CHEN Peng, WANG Yong, LU Xiangyu, WANG Junwei, ZHAO Kun. Experimental study on trailing edge with gradual flow resistance suppressing noise diffraction of BWB engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 79-86. DOI: 10.11729/syltlx20180175
    [8]Ni Zhangsong, Liu Senyun, Wang Qiao, Wang Zixu, Guo Long. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53. DOI: 10.11729/syltlx20180115
    [9]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [10]HUANG Ming-qi, LAN Bo, YANG Yong-dong, PENG Xian-min. Φ5m[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 94-97. DOI: 10.3969/j.issn.1672-9897.2013.05.018

Catalog

    Article Metrics

    Article views (225) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close