Citation: | Tian Weifang, Zheng Xu, Li Zhanhua, Xu Zheng. Measuring DLVO force and surface potential based on AFM colloidal probe technique at liquid-solid interfaces[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 16-21. DOI: 10.11729/syltlx20160163 |
[1] |
Israelachvili J N. Intermolecular and surface forces[M]. Academic Press, 2011.
|
[2] |
李战华, 吴健康, 胡国庆等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.
Li Z H, Wu J K, Hu G Q, et al. Fluid flow in microfluidic chips[M]. Beijing:Science Press, 2012.
|
[3] |
林炳承, 秦建华.图解微流控芯片实验室[M].北京:科学出版社, 2008.
Lin B C, Qin J H. Graphic laboratory on a microfluidic chip[M]. Beijing:Science Press, 2008.
|
[4] |
Kirby B J, Hasselbrink E F. Zeta potential of microfluidic substrates:Theory, experimental techniques, and effects on separations[J]. Electrophoresis, 2004, 25(2):187-202. DOI: 10.1002/(ISSN)1522-2683
|
[5] |
Schoch R, Han J, Renaud P. Transport phenomena in nanofluidics[J]. Review of Modern Physics, 2008, 80(3):839-883. DOI: 10.1103/RevModPhys.80.839
|
[6] |
Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope:technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1-6):1-152. DOI: 10.1016/j.surfrep.2005.08.003
|
[7] |
Audry M C, Piednoir A, Joseph P, et al. Amplification of electro-osmotic flows by wall slippage:direct measurements on OTS surfaces[J]. Faraday Discussions, 2010, 146(146):113-124. http://www.ncbi.nlm.nih.gov/pubmed/21043417
|
[8] |
郝旭欢, 常博, 郝旭丽. MEMS传感器的发展现状及应用综述[J].无线互联科技, 2016, 3:95-96. DOI: 10.3969/j.issn.1672-6944.2016.03.042
Hao X H, Chang B, Hao X L. Current development and application of MEMS sensors[J]. Wireless Internet Technology, 2016, 3:95-96. DOI: 10.3969/j.issn.1672-6944.2016.03.042
|
[9] |
Horn R G, Vinogradova O I, Mackay M E, et al. Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer[J]. Journal of Chemical Physics, 2000, 112(14):6424-6433. DOI: 10.1063/1.481274
|
[10] |
Van Zwol P J, Palasantzas G, Van de Schootbrugge M, et al. Roughness of microspheres for force measurements[J]. Langmuir, 2008, 24(14):7528-7531. DOI: 10.1021/la800664f
|
[11] |
Sader J E, Larson I, Mulvaney P, et al. Method for the calibration of atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1995, 66(7):3789-3798. DOI: 10.1063/1.1145439
|
[12] |
Butt H J, Jaschke M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1995, 6(1):1-7. DOI: 10.1088/0957-4484/6/1/001
|
[13] |
Sader J E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J]. Journal of Applied Physics, 1998, 84(1):64-76. DOI: 10.1063/1.368002
|
[14] |
Sader J E, Chon J W M, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10):3967-3969. DOI: 10.1063/1.1150021
|
[15] |
Cleveland J P, Manne S, Bocek S, et al. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy[J]. Review of Scientific Instruments, 1993, 64(2):403-405. DOI: 10.1063/1.1144209
|
[16] |
Kuznetsov V, Papastavrou G. Ion adsorption on modified electrodes as determined by direct force measurements under potentiostatic control[J]. The Journal of Chemical Physics C, 2014, 118(5):2673-2685. DOI: 10.1021/jp500425g
|
[17] |
Ducker W A, Senden T J, Pashley R M. Direct measurement of colloidal forces using an atomic force microscope[J]. Nature, 1991, 353(353):239-241. http://cat.inist.fr/?aModele=afficheN&cpsidt=4998932
|
[18] |
Horn R G, Smith D T. Measuring surface forces to explore surface chemistry:Mica, sapphire and silica[J]. Journal of Non-Crystalline Solids, 1990, 120(1-3):72-81. DOI: 10.1016/0022-3093(90)90192-O
|
[19] |
Legrand P A. The surface properties of silicas[J]. International Journal of Food Science & Technology, 2015, 50(4):966-973. http://ci.nii.ac.jp/ncid/BA35783269
|
[1] | LIU Qiang, LI Qiang, WEI Chunhua, YIN Xiwei, JIANG Hailin, LIANG Lei. The dynamic calibration method of PSP and its characteristics research considering the influence of temperature[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230161 |
[2] | CAI Yanqing, YANG Xiaoli, WANG Kaixing, LIU Fuqiang, LENG Xianyin, WANG Shaolin, LIU Cunxi, MU Yong, XU Gang. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24. DOI: 10.11729/syltlx20220082 |
[3] | WANG Lei, LI Zhe, FENG Lihao. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95. DOI: 10.11729/syltlx20230039 |
[4] | ZHAO Rongjuan, LIU Shiran, ZHOU Zheng, WU Liyin, LYU Zhiguo. Research of scramjet thrust test in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 103-108. DOI: 10.11729/syltlx20210025 |
[5] | CHEN Lin, FENG Jing. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 56-76. DOI: 10.11729/syltlx20220020 |
[6] | LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084 |
[7] | ZHAO Rongjuan, HUANG Jun, LIU Shiran, LYU Zhiguo, LI Guozhi. Application of ANSYS in piezoelectric balance design[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 96-102. DOI: 10.11729/syltlx20190005 |
[8] | Zhang Shiyu, Fu Zengliang, Zhao Junbo, Gao Qing, Qian Er. Development of near-space-vehicle anemometer and calibration tests in low-temperature-low-static-pressure wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 81-85, 103. DOI: 10.11729/syltlx20160137 |
[9] | Miao Bo, Zhu Chunling, Zhu Chengxiang, Zhang Huijun, Fu Bin. Vibration de-icing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 46-53. DOI: 10.11729/syltlx20160010 |
[10] | LIU Chu-ping, MENG Song-he, DU Bai-he, WANG Guo-lin. Preliminary tests of non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 50-53,69. DOI: 10.3969/j.issn.1672-9897.2009.03.011 |
1. |
苏鑫,管润程,王桥,苑伟政,吕湘连,何洋. 基于深度学习的结冰区域和厚度检测方法. 航空学报. 2023(S2): 205-213 .
![]() | |
2. |
郝云权,赵大志,李伟斌,赵炜,陈江涛. 飞机结冰的不确定性量化研究进展. 航空动力学报. 2022(09): 1855-1871 .
![]() | |
3. |
王良禹,徐浩军,张喆,裴彬彬,薛源. 结冰对飞机横航向飞行品质的影响. 飞行力学. 2018(01): 16-19 .
![]() | |
4. |
易贤,李维浩,王应宇,马洪林. 飞机结冰传感器安装位置确定方法. 实验流体力学. 2018(02): 48-54 .
![]() |