Citation: | Jiang Xianyang, Li Cunbiao. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 1-11. DOI: 10.11729/syltlx20160129 |
[1] |
Schmid P J, Henningson D S. Stability and transition in shear flows[M]. New York:Springer-Verlag, 2001.
|
[2] |
Morkovin M V. Bypass transition to turbulence and research desiderata[R]. NASA Lewis Research Center Transition in Turbines, 1985.
|
[3] |
Durbin P, Wu X. Transition beneath vortical disturbances[J]. Annual Review of Fluid Mechanics, 2007, 39(1):107-128. DOI: 10.1146/annurev.fluid.39.050905.110135
|
[4] |
Kachanov Y S. Physical mechanisms of laminar-boundary-layer transition[J]. Annual Review of Fluid Mechanics, 1994, 26(1):411-482. DOI: 10.1146/annurev.fl.26.010194.002211
|
[5] |
Lee C B, Wu J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):030802. DOI: 10.1115/1.2909605
|
[6] |
Mack L M. Boundary-layer stability theory[R]. AGRAD-R-709, 1984.
|
[7] |
Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅴ-tests with a cooled model[R]. AIAA-89-1895, 1989.
|
[8] |
Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅰ-Sharp cone[C]. 16th Fluid and Plasmadynamics Conference, Massachusetts, 1983.
|
[9] |
Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅱ-Blunt cone[C]. 22nd Aerospace Sciences Meeting, 1984.
|
[10] |
Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅲ-Sharp cone at angle of attack[C]. 23rd Aerospace Sciences Meeting, 1985.
|
[11] |
Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅳ-On unit Reynolds number and environmental effects[C]. 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference, 1986.
|
[12] |
Bountin D, Sidorenko A, Shiplyuk A. Development of natural disturbances in a hypersonic boundary layer on a sharp cone[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(1):57-62. DOI: 10.1023/A:1018852410488
|
[13] |
Dong M, Luo J S. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(8):1019-1028. DOI: 10.1007/s10483-007-0804-2
|
[14] |
Pruett C D, Chang C L. Direct numerical simulation of hypersonic boundary-layer flow on a flared cone[J]. Theoretical and Computational Fluid Dynamics, 1998, 11(1):49-67. DOI: 10.1007/s001620050080
|
[15] |
Fezer A, Kloker M. Spatial direct numerical simulation of transition phenomena in supersonic flat-plate boundary layers[M]. Springer Berlin Heidelberg, 2000.
|
[16] |
Reshotko E. Boundary-layer stability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8(1):311-349.
|
[17] |
罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm
Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm
|
[18] |
Fedorov A V, Khokhlov A P. Receptivity of hypersonic boundary layer to wall disturbances[J]. Theoretical and Computational Fluid Dynamics, 2002, 15(4):231-254. DOI: 10.1007/s001620100052
|
[19] |
Westin K J A, Bakchinov A A, Kozlov V V, et al. Experiments on localized disturbances in a flat plate boundary layer. Part 1. The receptivity and evolution of a localized free stream disturbance[J]. European Journal of Mechanics B-Fluids, 1998, 17(6):823-846. DOI: 10.1016/S0997-7546(99)80016-8
|
[20] |
Borodulin V I, Ivanov A V, Kachanov Y S, et al. Receptivity coefficients at excitation of cross-flow waves by free-stream vortices in the presence of surface roughness[J]. Journal of Fluid Mechanics, 2013, 716:487-527. DOI: 10.1017/jfm.2012.555
|
[21] |
Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34:291-319.
|
[22] |
Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. DOI: 10.1146/annurev-fluid-120710-101208
|
[23] |
Fedorov A V. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. DOI: 10.1146/annurev-fluid-122109-160750
|
[24] |
Balakumar P. Receptivity of hypersonic boundary layers to acoustic and vortical disturbances (invited)[C]. 45th AIAA Fluid Dynamics Conference, 2015.
|
[25] |
McKenzie J F, Westphal K O. Interaction of linear waves with oblique shock waves[J]. Physics of Fluids, 1968, 11(11):2350-2362. DOI: 10.1063/1.1691825
|
[26] |
Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound[J]. Journal of Fluid Mechanics, 2003, 488:79-121. DOI: 10.1017/S0022112003004798
|
[27] |
Fedorov A V, Khokhlov A P. Excitation of unstable modes in a supersonic boundary layer by acoustic waves[J]. Fluid Dyna-mics, 1991, 26(4):531-537.
|
[28] |
Fedorov A V, Khokhlov A P. Excitation and evolution of unstable disturbances in supersonic boundary layer[C]. Proceedings of ASME Fluid Engineering Conference, 1993, 151:1-13.
|
[29] |
Fedorov A V, Tumin A. Initial value problem for hypersonic boundary layer flows[C]. 15th AIAA Computational Fluid Dynamics Conference, 2001.
|
[30] |
Herbert T, Lin N A Y. Studies of boundary-layer receptivity with parabolized stability equations[C]. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 1993.
|
[31] |
Maslov A A, Shiplyuk A N, Sidorenko A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 426:73-94. DOI: 10.1017/S0022112000002147
|
[32] |
Schneider S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft & Rockets, 2008, 45(45):641-664.
|
[33] |
张传鸿. 高超声速静风洞的调试及圆锥边界层转捩的实验研究[D]. 北京: 北京大学, 2014.
Zhang C H. The development of hypersonic quiet wind tunnel and experimental investigation of hypersonic boundary-layer transition on a flared cone[D]. Beijing:Peking University, 2014.
|
[34] |
Zhang C, Lee C. Rayleigh-scattering visualization of the deve-lopment of second-mode waves[J]. Journal of Visualization, 2016:1-6.
|
[35] |
Fedorov A V, Khokhlov A P. Sensitivity of a supersonic boundary layer to acoustic disturbances[J]. Fluid Dynamics, 1992, 27(1):29-34. DOI: 10.1007/BF01054169
|
[36] |
Fedorov A V, Khokhlov A P, Khokhlov P. Prehistory of instability in a hypersonic boundary layer[J]. Theoretical and Computational Fluid Dynamics, 2001, 14(6):359-375. DOI: 10.1007/s001620100038
|
[37] |
Ma Y B, Zhong X L. Numerical simulation of receptivity and stability of nonequilibrium reacting hypersonic boundary layers[C]. 39th Aerospace Sciences Meeting and Exhibit, 2001.
|
[38] |
Fedorov A V. Receptivity of a high-speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics, 2003, 491:101-129. DOI: 10.1017/S0022112003005263
|
[39] |
Fedorov A V, Tumin A. Initial-value problem for hypersonic boundary-layer flows[J]. AIAA Journal, 2003, 41(3):379-389. DOI: 10.2514/2.1988
|
[40] |
Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flat plate. Part 1:Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003, 488:31-78. DOI: 10.1017/S0022112003004786
|
[41] |
周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社, 2015.
Zhou H, Su C H, Zhang Y M. Transition mechanism and prediction of supersonic/hypersonic boundary layers[M]. Beijing:Science Press, 2015.
|
[42] |
Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flat plate. Part 3. Effects of different types of free-stream disturbances[J]. Journal of Fluid Mechanics, 2005, 532:63-109. DOI: 10.1017/S0022112005003836
|
[43] |
Gao J, Luo J S, Wu X S. Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction[J]. Acta Mechanica Sinica, 2015, 31(6):899-909. DOI: 10.1007/s10409-015-0504-8
|
[44] |
张玉东, 傅德薰, 马延文, 等.钝锥高超声速边界层来流感受性数值研究[J].中国科学, 2008, 38(9):1246-1254. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200809016.htm
Zhang Y D, Fu D X, Ma Y W, et al. Receptivity to free-stream disturbance waves for hypersonic flow over a blunt cone[J]. Science in China, Series G:Physics, Mechanics and Astronomy, 2008, 38(9):1246-1254. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200809016.htm
|
[45] |
Shi J, Tang X, Wang Z, et al. Receptivity of boundary layer over a blunt wedge due to freestream pulse disturbances at Mach 6[J]. International Journal of Aerospace Engineering, 2016, (1):1-14.
|
[46] |
Kara K, Balakumar P, Kandil O. Receptivity of hypersonic boundary layers due to acoustic disturbances over blunt cone[C]. AIAA Aerospace Sciences Meeting and Exhibit, 2007.
|
[47] |
Balakumar P, Kegerise M A. Receptivity of hypersonic boundary layers over straight and flared cones[J]. AIAA Journal, 2015, 53(8):2097-2109. DOI: 10.2514/1.J053432
|
[48] |
Zhong X L, Lei J. Numerical simulation of nose bluntness effects on hypersonic boundary layer receptivity to freestream disturbances[R]. AIAA-2011-30379.
|
[49] |
Potter J L. Review of the influence of cooled walls on boundary-layer transition[J]. AIAA Journal, 1980, 18(8):1010-1012. DOI: 10.2514/3.7703
|
[50] |
Stetson K F, Kimmel R L. Surface temperature effects on boundary-layer transition[J]. AIAA Journal, 1992, 30(11):2782-2783. DOI: 10.2514/3.11300
|
[51] |
Kara K, Balakumar P, Kandil O. Effects of wall cooling on hypersonic boundary layer receptivity over a cone[C]. 38th Fluid Dynamics Conference and Exhibit, 2008.
|
[52] |
Blanchard A E. Investigation of wall-cooling effects on hypersonic boundary-layer stability in a quiet wind tunnel[D]. Norfolk, VA:Old Dominion University, 1995.
|
[53] |
Demetriades A. New experiments on hypersonic boundary layer stability including wall temperature effects[C]//Proceedings of the 1978 Heat Transfer and Fluid Mechanics Institute, 1978:39-54.
|
[54] |
Decarlo J P, Sanator R J, Torrillo D T. Hypersonic boundary-layer transition data for a cold-wall slender cone[J]. AIAA Journal, 1965, 3(4):758-760. DOI: 10.2514/3.2969
|
[55] |
Lysenko V I, Maslov A A. The effect of cooling on supersonic boundary-layer stability[J]. Journal of Fluid Mechanics, 1984, 147:39-52. DOI: 10.1017/S002211208400197X
|
[56] |
Sidorenko A, Gromyko Y, Bountin D, et al. Effect of the local wall cooling/heating on the hypersonic boundary layer stability and transition[J]. EUCASS Proceedings Series-Advances in AeroSpace Sciences, 2015, 7:549-568.
|
[57] |
Polivanov B P, Gromyko Y, Sidorenko A, et al. Effects of local wall heating and cooling on hypersonic boundary-layer stability[C]. Proceedings of the Summer Program 2011, 2011.
|
[58] |
Soudakov V, Egorov I, Fedorov A. Numerical simulation of receptivity of a hypersonic boundary layer over a surface with temperature jump[C]. ESA Special Publication, 2009, 659.
|
[59] |
Fedorov A V, Ryzhov A A, Soudakov V G, et al. Receptivity of a high-speed boundary layer to temperature spottiness[J]. Journal of Fluid Mechanics, 2013, 722:533-553. DOI: 10.1017/jfm.2013.111
|
[60] |
Egorov I V, Sudakov V G, Fedorov A V. Numerical modeling of the stabilization of a supersonic flat-plate boundary layer by a porous coating[J]. Fluid Dynamics, 2006, 41(3):356-365. DOI: 10.1007/s10697-006-0051-x
|
[61] |
Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. DOI: 10.1146/annurev-fluid-122109-160750
|
[62] |
Schmisseur J D, Schneider S P, Collicott S H. Supersonic boundary-layer response to optically generated freestream disturbances[J]. Experiments in Fluids, 2002, 33(2):225-232. DOI: 10.1007/s00348-001-0392-5
|
[63] |
Kosinov A D, Maslov A A, Shevelkov S G. Experiments on the stability of supersonic laminar boundary-layers[J]. Journal of Fluid Mechanics, 1990, 219:621-633. DOI: 10.1017/S0022112090003111
|
[64] |
Fedorov A V, Ryzhov A A, Soudakov V G, et al. Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability[J]. Computers & Fluids, 2014, 100:130-137. https://www.research.manchester.ac.uk/portal/en/publications/numerical-simulation-of-the-effect-of-local-volume-energy-supply-on-highspeed-boundary-layer-stability(df644230-a44b-4476-80bc-8f5268bcd348).html
|
[65] |
Kuester M S, White E B. Roughness receptivity and shielding in a flat plate boundary layer[J]. Journal of Fluid Mechanics, 2015, 777:430-460. DOI: 10.1017/jfm.2015.267
|
[66] |
Balakumar P. Boundary layer receptivity due to roughness and freestream sound for supersonic flows over axisymmetric cones[C]. 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington, 2008.
|
[67] |
Iyer P S, Muppidi S, Mahesh K. Roughness-induced transition in high speed flows[C]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011.
|
[68] |
Reda D C. Review and synthesis of roughness-dominated transition correlations for reentry applications[J]. Journal of Spacecraft and Rockets, 2002, 39(2):161-167. DOI: 10.2514/2.3803
|
[69] |
Schneider S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209. DOI: 10.2514/1.29713
|
[70] |
Schneider S P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1090-1105. DOI: 10.2514/1.37431
|
[71] |
Wang X, Zhong X. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. DOI: 10.2514/1.37766
|
[72] |
Mistry V I, Page G J, McGuirk J J. Simulation of receptivity and induced transition from discrete roughness elements[J]. Flow, Turbulence and Combustion, 2015, 95(2):301-334. https://www.researchgate.net/profile/James_Mcguirk/publication/283166050_Simulation_of_Receptivity_and_Induced_Transition_From_Discrete_Roughness_Elements/links/563895db08ae51ccb3cc5a62.pdf
|
[73] |
Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluids, 2015, 27(6):064105. DOI: 10.1063/1.4922389
|
[74] |
Egorov I V, Fedorov A V, Soudakov V G. Receptivity of a hypersonic boundary layer over a flat plate with a porous coating[J]. Journal of Fluid Mechanics, 2008, 601:165-187.
|
[75] |
Duan L, Wang X W, Zhong X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Phy-sics, 2010, 229(19):7207-7237. DOI: 10.1016/j.jcp.2010.06.008
|
[76] |
Fong K D, Wang X W, Huang Y T, et al. Second mode suppression in hypersonic boundary layer by roughness:design and experiments[J]. AIAA Journal, 2015, 53(10):3138-3143. DOI: 10.2514/1.J054100
|
[77] |
Balakumar P. Receptivity of hypersonic boundary layers to distributed roughness and acoustic disturbances[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
|
[78] |
Wang X W, Zhong X L. Effect of wall perturbations on the receptivity of a hypersonic boundary layer[J]. Physics of Fluids, 2009, 21(4):044101. DOI: 10.1063/1.3103880
|
[79] |
Ladd D M, Hendricks E W. The effect of background particulates on the delayed transition of a heated 9-1 ellipsoid[J]. Experiments in Fluids, 1985, 3(2):113-119. DOI: 10.1007/BF00276718
|
[80] |
Lauchle G C, Petrie H L, Stinebring D R. Laminar-flow performance of a heated body in particle-laden water[J]. Experiments in Fluids, 1995, 19(5):305-312. DOI: 10.1007/BF00203414
|
[81] |
Holden M S. Studies of transitional flow, unsteady separation phenomena and particle induced augmentation heating on ablated nose tips[R]. AFOSR-TR-76-1066, 1975.
|
[82] |
Fedorov A V, Tumin A. High-speed boundary-layer instability:old terminology and a new framework[J]. AIAA Journal, 2011, 49(8):1647-1657. DOI: 10.2514/1.J050835
|
[83] |
Van Ingen J L. The eN method for transition prediction:historical review of work at TU delft[C]. 38th Fluid Dynamics Conference and Exhibit, 2008.
|
[84] |
Lau K Y. Hypersonic boundary-layer transition:application to high-speed vehicle design[J]. Journal of Spacecraft and Rockets, 2008, 45(2):176-183. DOI: 10.2514/1.31134
|