Zhao Li, Zou Manling, Tian Jinglin, Yang Xi. Advances of research on internal cryogenic strain gauge balance abroad[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 1-9. DOI: 10.11729/syltlx20160090
Citation: Zhao Li, Zou Manling, Tian Jinglin, Yang Xi. Advances of research on internal cryogenic strain gauge balance abroad[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 1-9. DOI: 10.11729/syltlx20160090

Advances of research on internal cryogenic strain gauge balance abroad

More Information
  • Received Date: June 01, 2016
  • Revised Date: September 20, 2016
  • Cryogenic balance is the key measurement in cryogenic wind tunnel. Due to low air temperature and large temperature variation in the cryogenic wind tunnel, a series of problems arise, such as thermal zero drift and the variation of sensitivity. Therefore there is a risk of decreasing precision of the test data. Thus compared to conventional balances, the development of the cryogenic balance has more requirements and difficulties. By a wide literature survey, the key elements of cryogenic balance are sorted out as follows:design and optimization of balance, material selection and thermal treatment, processing and manufacturing of balance, matching of strain gauge, moisture treatment of balance at low ambient temperature, balance calibration algorithm as well as calibration apparatus and data acquisition equipment. A prospect of the cryogenic balance technologies is also given. The research results presented in this paper are of reference value for development and engineering application of cryogenic balance.
  • [1]
    王发祥, 高速风洞试验[M].北京:国防工业出版社, 2003.
    [2]
    恽起麟, 实验空气动力学[M].北京:国防工业出版社, 1991.
    [3]
    Kilgore R A. Evolution and development of cryogenic wind tunnels[R]. AIAA-2005-457, 2005.
    [4]
    Goodyer M J, Kilgore R A. The high Reynolds number cryogenic wind tunnel[R]. AIAA-72-995, 1972.
    [5]
    Wahls R A. The national transonic facility:a research retrospective (invited)[R]. AIAA-2001-0754, 2001.
    [6]
    Clark R W. High Reynolds number testing of advanced transport aircraft wings in the national transonic facility (Invited)[R]. AIAA-2001-0910, 2001.
    [7]
    Juergen Q. First measurements on an airbus high lift configuration at ETW up to flight Reynolds number[R]. AIAA-2002-0423, 2002.
    [8]
    Greena J, Quest J. A short history of the European transonic wind tunnel ETW[J]. Progress in Aerospace Sciences, 2011, 47(5):3219-368. https://www.researchgate.net/publication/232395594_A_short_history_of_the_European_Transonic_Wind_Tunnel_ETW
    [9]
    Ferris Judy. Cryogenic wind tunnel force instrumentation[C]//First International Symposium on Cryogenic Wind Tunnels, Southampton, 1979.
    [10]
    Schoenmakers T J. Development of a non-insulated cryogenic strain-gauge balance[R]. NLR, M-TP-82-006-U, 1982.
    [11]
    Ferris A T. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances[R]. NASA-TM-81845, 1980.
    [12]
    Kilgore R A, Davenport E E. Static force tests of a sharp leading edge delta-wing model at ambient and cryogenic temperatures with a description of the apparatus employed[R]. NASA-TM-X-73901, 1976.
    [13]
    Morre T C. Recommended strain gage application procedures for various Langley research center balances and test articles[R]. NASA TM-110327, 1997.
    [14]
    Morre T C. Suggested procedures for installing strain gauges on Langley research center wind tunnel balances, custom force measuring transducers, metallic and composite structural test articles[R]. NASA/TM-2004-213017, 2004.
    [15]
    Boyden R P, Johnson W G. Aerodynamic force measurements with a strain-gage balance in a cryogenic wind tunnel[R]. NASA TP-2251, 1983.
    [16]
    Law R D. Strain-gauge balance performance and internal temperature gradients measured in a cryogenic environment[R]. AD-A248840, 1992.
    [17]
    Baljeu J F. Development of a multi-component internal strain-gauge balance for model tests in a cryogenic wind tunnel[R]. NLR-TR-88157-U, 1990.
    [18]
    Hufnagel K, Ewald B. Force testing with internal strain gage balances[R]. AGARD-R-812, 1996.
    [19]
    Hufnagel K. Present status on internal wind tunnel balance technology[C]//Applied Aerodynamics and Design of Aerospace Vehicle (Sarod 2011) Symposium, Bangalore, India, 2001.
    [20]
    Hufnagel K, Quade M. The 2nd generation balance calibration machine of darmstadt university of technology (TUD)[R]. AIAA-2007-148, 2007.
    [21]
    Parker P A. Cryogenic balance technology at the national transonic facility[R]. AIAA-2001-0758, 2001.
    [22]
    Zhai J N, Ewald B, Hufnagel K. An investigation on the interference of internal six-component wind tunnel balances with FEM[C]//Instrumentation in Aerospace Simulation Facilities, 1995. ICIASF'95 Record, 1995.
    [23]
    Ewald B. The development of electron beam welded, strain-gaged wind-tunnel balances[J]. Journal of Aircraft, 1979, 16:349-352. DOI: 10.2514/3.58530
    [24]
    Rhew R D. NASA LaRC strain gage balance design concepts[R]. NASA/CP-1999-209101/PT1, 1999.
    [25]
    Ewald B. Multi-component force balances for conventional and cryogenic wind tunnels[J]. Meas Sci Technol, 2000, 11:81-94. https://www.researchgate.net/publication/231141681_Multi-component_force_balances_for_conventional_and_cryogenic_wind_tunnels
    [26]
    Rush H F. Grain refining heat treatment to improve cryogenic toughness of high-strength steels[R]. NASA-TM-85816, 1984.
    [27]
    Ferris A T. Cryogenic strain gage techniques used in force balance design for the national transonic facility[R]. NASA-TM-87712, 1986.
    [28]
    Moore T C. Strain gages in use at NASA Langley-a technical review[C]//First International Symposium on Strain Gauge Balances, Hampton, Virginia, 1996.
    [29]
    尹福炎.电阻应变计技术六十年(4).电结构应变测量用各种电阻应变计[J].传感器世界, 1999, 1:15-25. http://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ199901002.htm

    Yin F Y. sixty years of electric resistoance strain gages technique (4)[J]. Sensor worle, 1999, 1:15-25. http://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ199901002.htm
    [30]
    Boyden R P, Ferris A T, Johnson W G, et al. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel[R]. NASA-TM-89039, 1987.
    [31]
    Popernack T G, Adcock J B. Cryogenic temperature effects on sting-balance deflections in the national transonic facility[R]. NASA TM-4157, 1990.
    [32]
    Hereford J, Parker P A, Rhew R D. TIGER:development of thermal gradient compensation algorithms and techniques[R]. NASA Technical Report 200400865533, 2004.[WX)][LL][WX (4.5mm, 75.5mm]
    [33]
    Landman D, Yoder D, Reinholtz C, et al. A design of experiments approach applied to wind tunnel balance calibration at arnold engineering development complex[R]. AIAA-2013-1019, 2013.
    [34]
    Ferris A T. Strain gauge balance calibration and data reduction at NASA Langley research center[C]//First International Symposium on Strain Gauge Balances, Hampton, Virginia, 1996.
    [35]
    Ewald B, Polanski L. The cryogenic balance design and balance calibration methods[R]. AIAA-92-4001, 1992.
    [36]
    Ewald B. Theory and praxis of internal strain gage balance calibration for conventional and cryogenic[R]. AIAA-94-2584, 1994.
    [37]
    Polansky L, Kutney J T. A new working automatic calibration machine for wind tunnelinternal force balances[R]. AIAA-93-2467, 1993.
    [38]
    Hufnagel K. TUD calibration machine, production version and upgrades[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
    [39]
    Parker P A, Morton M, Draper N. et al. A single-vector force calibration method featuring the modern design of experiments[R]. AlAA-2001-0170, 2001.
    [40]
    Parker P A, Liu T S. Uncertainty analysis of the single-vector force balance calibration system[R]. AIAA-2002-2792, 2002.
    [41]
    Jones S M, Rhew R D. Recent developments and status of the Langley single vector balance calibration system (SVS)[C]//Fourth International Symposium on Strain Gauge Balances, San Diego, California, 2004.
    [42]
    Kimmel W M. Cryogenic model materials[R]. AIAA-2001-0757, 2001.
    [43]
    Devin E B. Review of potential wind tunnel balance technologies[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
    [44]
    Hare D A, Moore T C. Characteristics of extrinsic fabry-perot interferometric (EFPI) fiber-optic strain gages[R]. NASA/TP-2000-210639, 2000.
    [45]
    Jansen U, Hildebrand B. The 20mm advantage-shrinking an internal balance to meet clients' demands[R]. AIAA-2013-0416, 2013.
    [46]
    Jansen U, Quest J. SG balance improvements are slowing down-Europe can not wait that long[R]. AIAA-2007-351, 2007.
    [47]
    Semmelmann J. Design, calibration and commissioning of a small cryogenic high load balance for ETW[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
  • Cited by

    Periodical cited type(4)

    1. 杨欣磊,胡湘洪,李锴,郭振华. DO-160标准B类结冰试验方法应用研究. 电子产品可靠性与环境试验. 2023(02): 92-96 .
    2. 谭其志,苏艳菲. 水闸覆冰提升的ANSYS软件分析研究. 水利规划与设计. 2022(10): 88-91 .
    3. 苏杰,余放. 旋转脱冰试验与数值模拟研究. 南京航空航天大学学报. 2022(06): 1100-1107 .
    4. 陈功,孔维梁,王福新. 铝合金表面静态结冰过程中切向冰附着力的变化. 武汉理工大学学报. 2019(01): 98-104 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (231) PDF downloads (16) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close