Xiong Bo, Cheng Song, Luo Xinfu, Zhou Enmin. Effects of low Reynolds number on performance of 0.6m continuous wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 87-92,99. DOI: 10.11729/syltlx20160079
Citation: Xiong Bo, Cheng Song, Luo Xinfu, Zhou Enmin. Effects of low Reynolds number on performance of 0.6m continuous wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 87-92,99. DOI: 10.11729/syltlx20160079

Effects of low Reynolds number on performance of 0.6m continuous wind tunnel

More Information
  • Received Date: May 15, 2016
  • Revised Date: November 01, 2016
  • In the wind tunnel tests, the method of decreasing stagnation pressure is usually adopted to expand the simulation scope of Reynolds number. Compared with the normal pressure test, in the low Reynolds number situation, the accuracy of the test data is directly affected by whether or not the change of the flow field is obviously and whether or not the quality of the flow field satisfies the index. In order to study the influence of Reynolds number on the 0.6m continuous wind tunnel performance, the relevant tests were carried out in the 0.6m continuous wind tunnel. Based on arrangement and analysis of the tests data, the results were given. It shows that: (1) The Reynolds number has obvious effect on the performance of the compressor, stagnation pressure control precision, Mach number control precision, the flow uniformity etc. When Rec<5×105(c=0.1√A is the cross-sectional area of the test section),the effect of Reynolds number on the performance of wind tunnel is obvious. The smaller the Reynolds number is, the greater the effect is. (2) The 0.6m continuous wind tunnel can accuratly manifest the influence law of the effects of Reynolds number on the flow field performance of the wind tunnel and the force test data. Therefore, it is a good test platform for the capability research on aircraft, airfoil, engine, etc., at low Reynolds number.
  • [1]
    恽起麟. 实验空气动力学[M]. 北京: 国防工业出版社, 1991: 6-12.
    [2]
    钟世东, 吴军强, 魏志, 等. 2.4米跨声速风洞Re模拟能力及应用[J]. 实验流体力学, 2008, 22 (4): 76-79.

    Zhong S D, Wu J Q, Wei Z, et al. Reynolds number variation capability and applications of 2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22 (4): 76-79.
    [3]
    叶建, 邹正平, 陆利蓬, 等. 低雷诺数下翼型前缘流动分离机制的研究[J]. 北京航空航天大学学报, 2004, 30 (8): 693-697. http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200408000.htm

    Ye J, Zou Z P, Lu L P, et al. Investigation of separation mechanism for airfoil leading edge flow at low Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30 (8): 693-697. http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200408000.htm
    [4]
    孙有田, 田义宏, 邵锦文. 低雷诺数弯曲叶片流场数值模拟研究[J]. 战术导弹技术, 2007, (4): 31-36. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD200704007.htm

    Sun Y T, Tian Y H, Shao J W. Fluid numerical simulation of low Reynolds number on bowed blade[J]. Tactical M issile Technology, 2007, (4): 31-36. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD200704007.htm
    [5]
    王英锋, 胡俊. 雷诺数对轴流压气机稳定性的影响[J]. 航空动力学报, 2004, (2): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200401014.htm

    Wang Y F, Hu J. The effects of Reynolds number on the stability of axial compressor[J]. Journal of Aerospace Power, 2004, (2): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200401014.htm
    [6]
    王英锋, 胡俊. 雷诺数对轴流风扇/压气机性能和稳定性的影响[J]. 南京航空航天大学学报, 2004, (4): 145-149. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK200402001.htm

    Wang Y F, Hu J. Effects of Reynolds number on performance and stability of axial fans/compressor[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2004, (4): 145- 149. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK200402001.htm
    [7]
    温泉, 梁德旺, 李逢春, 等. 雷诺数效应对小流量多级轴流压气机的性能影响[J]. 航空动力学报, 2004, (1): 81-88. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200401016.htm

    Wen Q, Liang D W, Li F C, et al. Effects of Reynolds number in a small multistage axial flow compressor[J]. Journal of Aerospace Power, 2004, (1): 81-88. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200401016.htm
    [8]
    唐海龙, 朱之丽, 罗安阳, 等. 低Re对某小型涡扇发动机性能影响[J]. 北京航空航天大学学报, 2005, (3): 303-306.

    Tang H L, Zhu Z L, Luo A Y, et al. Analysis of effects of low Reynold's number on small turbofan engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, (3): 303-306.
    [9]
    伊进宝, 乔渭阳, 王占学. 低雷诺数涡轮叶栅损失的实验与数值模拟研究[J]. 西北工业大学学报, 2004, 22 (5): 550-553. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD200405002.htm

    Yi J B, Qiao W Y, Wang Z X. Experimental and numerical investigation of loss inturbine cascade with low Reynolds number[J]. Journal of Northwestern Polytechnical University, 2004, 22 (5): 550-553. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD200405002.htm
    [10]
    李超俊, 余文龙. 轴流压缩机原理与气动设计[M]. 北京: 机械工业出版社出版, 1986: 71-74.

    Li C J, Yu W L. Axial compressor principle and aerodynamic design[M]. Beijing: China Machine Press, 1986: 71-74.
    [11]
    王松涛, 刘勋, 周逊, 等. 低压涡轮低雷诺数条件下气动性能分析[J]. 汽轮机技术, 2011, (10): 324-327. http://www.cnki.com.cn/Article/CJFDTOTAL-QLJV201105003.htm

    Wang S T, Liu X, Zhou X, et al. Aerodynamic performance analysis of low pressure turbine at low Reynolds numbers[J]. Turbing Technology, 2011, (10): 324-327. http://www.cnki.com.cn/Article/CJFDTOTAL-QLJV201105003.htm
    [12]
    霍磊, 刘火星. 低雷诺数下离心压气机性能及流动影响的数值研究[J]. 航空动力学报, 2013, 28 (4): 911-919. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201304028.htm

    Huo L, Liu H X. Numerical analysis of centrifugal compressor performance and flow at low Reynolds numbers[J]. Journal of Aerospace Power, 2013, 28 (4): 911-919. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201304028.htm
    [13]
    国防科学技术工业委员会. GJB1179-91 高速风洞和低速风洞流场品质规范[S]. 北京: 国防科工委军标出版社, 1992.

    Technology and Industry for National Defense of China. Specification for flow quality of high and low speed wind tunnels[S]. Beijing: The Military Standard Press of Technology and Industry for National Defense, 1992.
    [14]
    程厚梅. 风洞试验干扰与修正[M]. 北京: 国防工业出版社, 2003: 282-285, 301-305.

    Cheng H M. Disturbance and correction of wind tunnel experiment[M]. Beijing: National Defense Industry Press, 2003: 282-285, 301-305.
  • Related Articles

    [1]XIA Huihui, ZHANG Shunping, YANG Shunhua, KAN Ruifeng, XU Zhenyu, RUAN Jun, YAO Lu, HUANG An. Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 80-86. DOI: 10.11729/syltlx20220103
    [2]LIANG Xiaoyi, DING Junfei, ZHANG Yong, LIU Yiqun, TIAN Haiping. Three-dimensional particle reconstruction method for trichromatic mask PIV based on convolutional neural networks[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240045
    [3]YUAN Xun, YU Xin, PENG Jiangbo, QIN Fei, LIU Bing, CAO Zhen, GAO Long, HAN Minghong. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 30-36. DOI: 10.11729/syltlx20210150
    [4]JIANG Hao, WANG Bofu, CHONG Kai Leong, LU Zhiming. Reconstruction of turbulent fields based on super-resolution reconstruction method[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 102-109. DOI: 10.11729/syltlx20210185
    [5]ZHU Haijun, WANG Qian, MEI Xiaohan, WU Yu, ZHAO Changying. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 49-73. DOI: 10.11729/syltlx20210110
    [6]SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. DOI: 10.11729/syltlx20190135
    [7]Wang Jinhua, Nie Yaohui, Chang Min, Zhang Meng, Huang Zuohua. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147
    [8]Huang Zhenli, Zhou Weihu, Qu Zhaosong. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 1-14. DOI: 10.11729/syltlx20160173
    [9]HUANG Hui-ming, LIU Xiang-yong, MA Jun, SONG Jin. The improvement method in 3-D measurement of airplane free-spin[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 77-81. DOI: 10.3969/j.issn.1672-9897.2013.02.015
    [10]CHEN Zhao, GUO Yong-cai, GAO Chao. Principle and technology of three-dimensional PIV[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 77-82,105. DOI: 10.3969/j.issn.1672-9897.2006.04.015
  • Cited by

    Periodical cited type(2)

    1. 幸文婷,朱赤,叶晓明,吴杰俊. 基于自制设备的能源与动力工程测试技术实验课程设计. 实验科学与技术. 2023(04): 105-110 .
    2. 李涛,吴颖,余妍熹. 重力加速度对活塞式压力计准确性的影响. 海峡科技与产业. 2018(01): 61-62 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (242) PDF downloads (13) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close