Wu Dong, Chen Dej iang, Zhou Wei, Du Baihe. High temperature strain measurement of the front edge structure in high thermal environment[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 92-97. DOI: 10.11729/syltlx20150131
Citation: Wu Dong, Chen Dej iang, Zhou Wei, Du Baihe. High temperature strain measurement of the front edge structure in high thermal environment[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 92-97. DOI: 10.11729/syltlx20150131

High temperature strain measurement of the front edge structure in high thermal environment

More Information
  • During the long time flight in the aerosphere,the hypersonic vehicles’front edge structures are heated badly and affected greatly by thermal stress.Therefore it is necessary to an-alyze the stress field of the front edge structure.The hot structure experiment of hypersonic ve-hicles’front edge was done in the arc heated wind-tunnel.During the experiment high tempera-ture strain was measured using the high temperature strain gages.In this paper,the experimen-tal equipment,the experimental condition,the experimental model and calibration of thermal output are introduced.The experimental data of two kinds of model materials including carbon composite and heat-resistant alloy are analyzed.The computational results verifies the experi-mental data.The temperature of the experimental strain measurement was 600℃.The experi-mental results show that the front edge model’s side flat is in a normal stress state.The results shall be an important reference for structure optimization design.
  • Related Articles

    [1]WANG Chaozong, BAI Bing, QI Xinhua, CHEN Shuang. Experiments on 2500 K high temperature stable combustion environment of hydrocarbon fuel via CARS[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 97-98. DOI: 10.11729/syltlx20220126
    [2]ZHANG Lei, ZHANG Ruoling, XIAO Shide, LIU Yu, XIONG Ying. Experimental investigation on high temperature deformation of regeneratively cooled combustor structure based on non-contact measurement[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 53-59. DOI: 10.11729/syltlx20200051
    [3]HUANG Jun, QIU Huacheng, LIU Shiran, ZHAO Rongjuan, LYU Zhiguo, YANG Yanguang. Research on semiconductor strain gage balance technology applied in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 79-85. DOI: 10.11729/syltlx20190122
    [4]Tao Bo, Wang Sheng, Hu Zhiyun, Zhang Lirong, Zhang Zhenrong, Ye Xisheng. TDLAS 技术二次谐波法测量发动机温度[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 68-72. DOI: 10.11729/syltlx20140053
    [5]LUO Fei-teng, SONG Wen-yan, LIU Wei-xiong, LI Jian-ping. Investigation of cored bricks matrix preliminary design and thermal analysis for high temperature wind tunnel storage heater[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 38-45. DOI: 10.3969/j.issn.1672-9897.2013.01.007
    [6]DAI Cheng-guo, ZHANG Chang-feng, HUANG Ju, ZHOU Qing-zhan. Hypersonic skin friction stress measurements using oil film interferometry technique[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 68-71,85. DOI: 10.3969/j.issn.1672-9897.2012.02.015
    [7]CHEN Lian-zhong, OU Dong-bin. Elementary research on the application of high temperature heat-pipe to the thermal protection[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 51-54. DOI: 10.3969/j.issn.1672-9897.2010.01.010
    [8]YANG Hong, XIE Ai-min, TANG Jing-wei. Micrography technique of particle velocity measurement in the high temperature jet flow[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 65-68. DOI: 10.3969/j.issn.1672-9897.2009.04.013
    [9]ZHANG Xiao-di, JIANG Jia-li, JIA Yuan-sheng, MA Hong-zhi, XIAO Ya-ke. Videogrammetry application in wind tunnel model attitude measurement[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 21-25. DOI: 10.3969/j.issn.1672-9897.2005.03.005
    [10]DENG Jian-ping, WANG Guo-Lin, HUANG Pei-ran. The IR thermography technique for high temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(1): 43-47. DOI: 10.3969/j.issn.1672-9897.2001.01.008
  • Cited by

    Periodical cited type(10)

    1. 王则力,孝春成,王晓晖. 光纤高温应变测量准确性评价研究. 强度与环境. 2023(05): 60-64 .
    2. 吴东,杨鸿,赵文峰,罗跃. 高超声速飞行器碳基结构高温应变测量. 航空学报. 2022(S2): 163-172 .
    3. 王成亮,曹志伟,武小峰,张爱茵,郑毅,王智勇. 高温环境下电阻应变测试技术研究. 强度与环境. 2020(03): 51-56 .
    4. 桂业伟,刘磊,魏东. 长航时高超声速飞行器的综合热效应问题. 空气动力学学报. 2020(04): 641-650 .
    5. 董先莹,吴世芳,陈锴. 中温应变测试中的温度补偿研究. 电子测量技术. 2020(18): 146-150 .
    6. 许艳芝,雷晓波,文敏,胡春晓,赵博. 某发动机喷管构件高温载荷测量. 机械强度. 2019(03): 696-701 .
    7. 王则力,乔通,宫文然,王智勇,荣克林,王晓晖. 碳基复合材料结构800℃光纤高温应变测量. 强度与环境. 2019(03): 1-6 .
    8. 乔通,王则力,宫文然,王智勇. 改性C/C材料梁结构四点弯高温应变光纤传感测量. 强度与环境. 2019(05): 1-6 .
    9. 王智勇,王则力,宫文然,乔通,刘函. 热结构高温应变光学测量技术发展探讨. 强度与环境. 2019(06): 1-8 .
    10. 于开平,白云鹤,赵锐,周昊天. 高温环境下结构模态试验技术. 力学与实践. 2018(01): 1-12 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (203) PDF downloads (15) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close