LAI Huan, CHEN Wanhua, SUN Dewen, NIE Xutao, ZHU Changjiang. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156
Citation: LAI Huan, CHEN Wanhua, SUN Dewen, NIE Xutao, ZHU Changjiang. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156

The structural design for 0.3 m cryogenic continuous transonic wind tunnel

More Information
  • Received Date: November 22, 2019
  • Revised Date: May 10, 2020
  • During the process of cryogenic wind tunnel operation, low temperature and a wide range of temperature variation lead to strong thermal stress and deformation of structure circuit, which may decreases the aerodynamic performance and safety of cryogenic wind tunnel. In order to control the thermal deformation and decrease thermal structure stress, several technological approaches have been applied in the 0.3 m cryogenic wind tunnel structure design, including selecting most reasonable cryogenic materials, active heat transfer in plenum chamber, stress and deformation releasing design and thermal stress calculation by using Finite Element Method (FEM). Calculation shows the ultimate thermal stress appeared on plenum chamber pressure shell, extending to 110 MPa after the 7200 s cooling down process of 0.3 m cryogenic wind tunnel, with a 110 K and 250 K strucure temperature on corner vanes and shell flange respectively. The predicted structure safety factor is greater than 1.8. The ultimate thermal deformation is appeared on the fourth corner shell when the circuit temperature cooling down to 90 K, contracting to 29 mm in aero axes direction and 12 mm in crossleg axes direction, respectively. The subsequent wind tunnel test shows that the simulation results of FEM are consistent with the measure results Calibration indicates that the structural design of 0.3 m cryogenic wind tunnel is reliable.
  • [1]
    GOODYER M J. The cryogenic wind tunnel[J]. Progress in Aerospace Sciences, 1992, 29(3):193-220. DOI: 10.1016/0376-0421(92)90008-6
    [2]
    ZHANG Z, NIU L. Current Status and key technologies of cryogenic wind tunnel[J]. Cryogenics, 2015, 2:57-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwgc201502011
    [3]
    BRUCE W E, GLOSS B B. The US national transonic facility, NTF[R]. AGARD-R-774, 1989.
    [4]
    GREEN J, QUEST G. A short history of the European Transonic Wind Tunnel (ETW)[J]. Aerospace Sciences, 2011, 47:319-368. DOI: 10.1016/j.paerosci.2011.06.002
    [5]
    廖达雄, 黄知龙, 陈振华, 等.大型低温高雷诺数风洞及其关键技术综述[J].实验流体力学, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml

    LIAO D X, HUANG Z L, CHENG Z H, et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml
    [6]
    宋远佳, 陈振华, 赖欢, 等.低温风洞绝热系统的研究现状及其关键技术[J].哈尔滨工业大学学报, 2019, 51(7):63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201907009

    SONG Y J, CHEN Z H, LAI H, et al. Development and key technology of cryogenic wind tunnel insulation system[J]. Journal of Harbin Institute of Technology, 2019, 51(7):63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201907009
    [7]
    陈振华, 聂徐庆, 杨文国.小型低温风洞压缩机转子结构设计[J].实验流体力学, 2018, 32(1):98-104. http://www.syltlx.com/CN/abstract/abstract11086.shtml

    CHEN Z H, NIE X Q, YANG W G. Structural design of a small cryogenic wind tunnel compressor rotor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):98-104. http://www.syltlx.com/CN/abstract/abstract11086.shtml
    [8]
    孙德文, 陈万华, 祝长江, 等. Nitronic 50不锈钢低温冲击韧性大幅降低原因分析[J].理化检验(物理分册), 2017, 53(10):750-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100036343

    SUN D W, CHEN W H, ZHU C J, et al. Cause analysis on significant decrease of impact toughness of Nitronic 50 stainless steel at cryogenic temperature[J]. Physical Testing and Chemical Analysis (Part A:Physical Testing), 2017, 53(10):750-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100036343
    [9]
    王嵘, 郝春功, 杨娇萍, 等.超低温复合材料的研究进展[J].化工新型材料, 2007, 35(7):8-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200707003

    WANG R, HAO C G, YANG J P, et al. Research advances in cryogenic composites[J]. New Chemical Materials, 2007, 35(7):8-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200707003
    [10]
    周丽敏, 李祥东, 汪荣顺.移动式低温容器中的纤维增强复合材料[J].低温与超导, 2008, 36(8):5-8, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd200808002

    ZHOU L M, LI X D, WANG R S. Fibre reinforced composites in portable cryogenic containers[J]. Cryogenics and Superconductivity, 2008, 36(8):5-8, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd200808002
    [11]
    ALLEN R F, BOWEN P. Thermo elastic analysis of a type 3 cryogenic tank considering curing temperature and autofrettage-press[J]. Journal of Reinforced Plastics and Composites, 2008, 27(5):459-471. DOI: 10.1177/0731684407081371
    [12]
    朱立伟, 柳建华, 张良, 等. LNG船用超低温球阀的低温应力分析及数值模拟[J].低温与超导, 2010, 38(5):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd201005003

    ZHU L W, LIU J H, ZHANG L, et al. Numerical simulation of stress and tightness of cryogenic valve used in LNG carrier[J]. Cryogenics and Superconductivity, 2010, 38(5):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd201005003
    [13]
    张志秋, 陈振华, 聂旭涛, 等.基于流固热耦合低温风洞扩散段热力学特性分析[J].实验流体力学, 2016, 30(6):18-25. http://www.syltlx.com/CN/abstract/abstract10975.shtml

    ZHANG Z Q, CHEN Z H, NIE X T, et al. Thermodynamic characteristic analysis of the cryogenic wind tunnel diffuser section based on fluid-thermal-structural coupling[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):18-25. http://www.syltlx.com/CN/abstract/abstract10975.shtml
    [14]
    麻越垠, 聂旭涛, 陈万华, 等.基于响应面法的低温风洞扩散段热力学模型修正[J].实验流体力学, 2017, 31(4):71-78. http://www.syltlx.com/CN/abstract/abstract11043.shtml

    MA Y Y, NIE X T, CHEN W H, et al. Thermodynamics model updating of cryogenic wind tunnel diffuser based on response surface method[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4):71-78. http://www.syltlx.com/CN/abstract/abstract11043.shtml
    [15]
    刘砚涛, 王莉敏, 吴兵, 等.低温静力试验热应变/热应力修正方法研究[J].强度与环境, 2014, 41(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdyhj201402006

    LIU Y T, WANG L M, WU B, et al. Research of modifying thermal strain/stress in low temperature static test[J]. Structure & Environment Engineering, 2014, 41(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdyhj201402006

Catalog

    Article Metrics

    Article views (500) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close