留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冯卡门涡旋流动系统中各向异性的实验研究

王封 张亿宝 郗恒东

王封, 张亿宝, 郗恒东. 冯卡门涡旋流动系统中各向异性的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230159
引用本文: 王封, 张亿宝, 郗恒东. 冯卡门涡旋流动系统中各向异性的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230159
WANG F, ZHANG Y B, XI H D. Experimental study on the anisotropy in von Kármán swirling flow system[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230159
Citation: WANG F, ZHANG Y B, XI H D. Experimental study on the anisotropy in von Kármán swirling flow system[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230159

冯卡门涡旋流动系统中各向异性的实验研究

doi: 10.11729/syltlx20230159
基金项目: 国家自然科学基金项目(12125204, 12388101);博士后科学基金项目(2022M721853)
详细信息
    作者简介:

    王封:(1997—),男,陕西西安人,博士研究生。研究方向:高聚物湍流。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学航空学院(710072)。E-mail:wangfeng721@mail.nwpu.edu.cn

    通讯作者:

    E-mail:hengdongxi@nwpu.edu.cn

  • 中图分类号: O357.5

Experimental study on the anisotropy in von Kármán swirling flow system

  • 摘要: 利用Tomo–PIV测量了冯卡门涡旋流动系统中心区域的三维速度信息,通过2种方法计算得到的速度二阶结构函数,分析了该系统中流动的各向异性特性。实验结果表明:冯卡门涡旋流动系统中心区域的流动均匀性较好,但均方根速度的不同分量间呈现出显著的各向异性,水平分量与竖直分量比值约为1.5。通过2种方法计算得到的速度二阶结构函数结果相近,并给出:经过各个方向分量平均后的速度二阶结构函数各向同性度较高;但其在尺度空间中的分布呈现“水平面内各向同性度高,竖直平面内存在一定各向异性”的特性,且随着尺度的减小,此各向异性会逐渐减弱并接近各向同性。该研究为认识湍流流动以及冯卡门涡旋流动系统提供了基础理解和分析方法。
  • 图  1  实验设备示意图

    Figure  1.  Experimental setup

    图  2  沿1方向速度增量示意图

    Figure  2.  Velocity increments along direction 1

    图  3  方法二计算速度结构函数的步骤(二维情况)

    Figure  3.  Steps to calculate velocity structure function through method Ⅱ (two-dimensional case)

    图  4  时均速度场和湍流强度的空间分布

    Figure  4.  Spatial distribution of the mean velocity field and turbulence intensity

    图  5  方法一计算得到的纵向速度二阶结构函数

    Figure  5.  Longitudinal second order velocity structure function through method Ⅰ

    图  6  方法一计算得到的横向速度二阶结构函数

    Figure  6.  Transverse second order velocity structure function through method Ⅰ

    图  7  方法二计算得到的纵向速度二阶结构函数

    Figure  7.  Longitudinal second order velocity structure function through method Ⅱ

    图  8  纵向速度二阶结构函数在尺度空间的分布(方法二)

    Figure  8.  Scale-space distribution of longitudinal second order velocity structure function through method Ⅱ

    图  9  纵向速度二阶结构函数在不同尺度上的脉动(方法二)

    Figure  9.  Fluctuations of longitudinal second order velocity structure function among the spherical shell through method Ⅱ

    图  10  三维尺度空间内极角和方位角的定义

    Figure  10.  Definition of polar angle and azimuth angle in three-dimensional scale space

    图  11  纵向速度二阶结构函数随极角和方位角的变化(方法二)

    Figure  11.  Variation of longitudinal second order velocity structure function with polar angle and azimuth angle (method Ⅱ)

    表  1  均方根速度在物理空间内的脉动

    Table  1.   Fluctuations of the RMS velocity over the measurement volume

    工况 u'分量 v'分量 w'分量 合量
    本实验 1.40% 1.85% 0.95% 0.88%
    文献[26] 1.30% 1.90% 1.30% /
    下载: 导出CSV
  • [1] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
    [2] SCHLICHTING H, GERSTEN K. Fundamentals of boundary–layer theory[M]//Boundary-Layer Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016: 29-49. .
    [3] TAYLOR G I. Statistical theory of turbulence[J]. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 1935, 151(873): 421–444. doi: 10.1098/rspa.1935.0158
    [4] BATCHELOR G K. The theory of homogeneous turbu-lence[M]. Cambridge: Cambridge University Press, 1953.
    [5] ORSZAG S A, PATTERSON Jr G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence[J]. Physical Review Letters, 1972, 28(2): 76–79. doi: 10.1103/physrevlett.28.76
    [6] ISHIHARA T, GOTOH T, KANEDA Y. Study of high–Reynolds number isotropic turbulence by direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 165–180. doi: 10.1146/annurev.fluid.010908.165203
    [7] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9–13. doi: 10.1098/rspa.1991.0075
    [8] FRISCH U, KOLMOGOROV A N. Turbulence: the legacy of A. N. Kolmogorov[M]. Cambridge: Cambridge University Press, 1995.
    [9] MONIN A S, YAGLOM A M. Statistical fluid mechanics, volume Ⅱ: mechanics of turbulence[M]. New York: Dover Publications, 2013.
    [10] ZANDBERGEN P J, DIJKSTRA D. Von Kármán swirling flows[J]. Annual Review of Fluid Mechanics, 1987, 19: 465–491. doi: 10.1146/annurev.fl.19.010187.002341
    [11] DOUADY S, COUDER Y, BRACHET M E. Direct observation of the intermittency of intense vorticity filaments in turbulence[J]. Physical Review Letters, 1991, 67(8): 983–986. doi: 10.1103/physrevlett.67.983
    [12] VOTH G A, SATYANARAYAN K, BODENSCHATZ E. Lagrangian acceleration measurements at large Reynolds numbers[J]. Physics of Fluids, 1998, 10(9): 2268–2280. doi: 10.1063/1.869748
    [13] VOTH G A, LA PORTA A, CRAWFORD A M, et al. Measurement of particle accelerations in fully developed turbulence[J]. Journal of Fluid Mechanics, 2002, 469: 121–160. doi: 10.1017/s0022112002001842
    [14] BOURGOIN M, OUELLETTE N T, XU H T, et al. The role of pair dispersion in turbulent flow[J]. Science, 2006, 311(5762): 835–838. doi: 10.1126/science.1121726
    [15] TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[C]//Proc. of In. Cong. On Rheology, 1948.
    [16] WHITE C M, MUNGAL M G. Mechanics and prediction of turbulent drag reduction with polymer additives[J]. Annual Review of Fluid Mechanics, 2008, 40: 235–256. doi: 10.1146/annurev.fluid.40.111406.102156
    [17] CRAWFORD A M, MORDANT N, XU H T, et al. Fluid acceleration in the bulk of turbulent dilute polymer solutions[J]. New Journal of Physics, 2008, 10(12): 123015. doi: 10.1088/1367-2630/10/12/123015
    [18] OUELLETTE N T, XU H T, BODENSCHATZ E. Bulk turbulence in dilute polymer solutions[J]. Journal of Fluid Mechanics, 2009, 629: 375–385. doi: 10.1017/s0022112009006697
    [19] XI H D, BODENSCHATZ E, XU H T. Elastic energy flux by flexible polymers in fluid turbulence[J]. Physical Review Letters, 2013, 111(2): 024501. doi: 10.1103/physrevlett.111.024501
    [20] ZHANG Y B, BODENSCHATZ E, XU H T, et al. Experimental observation of the elastic range scaling in turbulent flow with polymer additives[J]. Science Advances, 2021, 7(14): eabd3525. doi: 10.1126/sciadv.abd3525
    [21] 陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025

    CHEN Z Y, ZHANG Q F, PAN C, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025
    [22] OUELLETTE N T, XU H T, BOURGOIN M, et al. Small-scale anisotropy in Lagrangian turbulence[J]. New Journal of Physics, 2006, 8(6): 102. doi: 10.1088/1367-2630/8/6/102
    [23] SREENIVASAN K R. On the universality of the Kolmogorov constant[J]. Physics of Fluids, 1995, 7(11): 2778–2784. doi: 10.1063/1.868656
    [24] YEUNG P K, ZHOU Y. Universality of the Kolmogorov constant in numerical simulations of turbulence[J]. Physical Review E, 1997, 56(2): 1746–1752. doi: 10.1103/physreve.56.1746
    [25] MONCHAUX R, RAVELET F, DUBRULLE B, et al. Properties of steady states in turbulent axisymmetric flows[J]. Physical Review Letters, 2006, 96(12): 124502. doi: 10.1103/physrevlett.96.124502
    [26] KNUTSEN A N, BAJ P, LAWSON J M, et al. The inter-scale energy budget in a von Kármán mixing flow[J]. Journal of Fluid Mechanics, 2020, 895: A11. doi: 10.1017/jfm.2020.277
    [27] TAYLOR M A, KURIEN S, EYINK G L. Recovering isotropic statistics in turbulence simulations: the Kolmo-gorov 4/5th law[J]. Physical Review E, 2003, 68(2): 026310. doi: 10.1103/PhysRevE.68.026310
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  27
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 修回日期:  2023-12-13
  • 录用日期:  2023-12-19
  • 网络出版日期:  2024-01-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日