留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MHz高速PIV实验技术研究

鲁鑫涛 赵航 佘文轩 涂晗 高琪 魏润杰 张放 陈爽

鲁鑫涛, 赵航, 佘文轩, 等. MHz高速PIV实验技术研究[J]. 实验流体力学, doi: 10.11729/syltlx20230144
引用本文: 鲁鑫涛, 赵航, 佘文轩, 等. MHz高速PIV实验技术研究[J]. 实验流体力学, doi: 10.11729/syltlx20230144
LU X T, ZHAO H, SHE W X, et al. Study on MHz high-speed PIV technique[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230144
Citation: LU X T, ZHAO H, SHE W X, et al. Study on MHz high-speed PIV technique[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230144

MHz高速PIV实验技术研究

doi: 10.11729/syltlx20230144
基金项目: 国家重点研发计划资助项目(2020YFA0405700)
详细信息
    作者简介:

    鲁鑫涛:(1999—),男,浙江余姚人,博士研究生。研究方向:实验流体力学。通信地址:浙江省杭州市浙江大学玉泉校区教12-131(310027)E-mail:luxtzju@163.com

    通讯作者:

    E-mail:qigao@zju.edu.cn

  • 中图分类号: O354.2

Study on MHz high-speed PIV technique

  • 摘要: 跨声速流动因为其复杂的非定常流动特性,一直是实验研究中的一大难题。为了能较好地解析亚跨超声速流动中的小时间尺度流动,本文研究了MHz频率的粒子图像测速技术(Particle Image Velocimetry, PIV)。在实验测量的跨声速射流场中,利用5台高速相机对同一测量区域进行交替快速拍摄,得到超高时间分辨率的粒子图像数据。通过图像处理技术完成了图像的光学畸变修正和公共区域识别。应用Ensemble Correlation互相关算法,基于速度场结果,完成了可压缩湍流场的能谱解析。实验证明了MHz–PIV的高频采样能力,极大地减小了高频采样技术对相机性能的依赖性,为跨声速实验提供了一种具有高时空分辨率的精细测量技术。
  • 图  1  射流喷管及示踪粒子投放系统

    Figure  1.  Jet nozzle and tracer particle injection system

    图  2  MHz–PIV实验台

    Figure  2.  MHz–PIV experimental platform

    图  3  相机时序图

    Figure  3.  Camera timing diagram

    图  4  标定图像中的像素坐标系及世界坐标系

    Figure  4.  Pixel coordinate system and world coordinate system in the calibration image

    图  5  公共区域识别提取算法效果示意

    Figure  5.  Schematic diagram of the effect of the common area identification and extraction algorithm

    图  6  Ensemble Correlation算法图解摘自Meinhart 等[32]

    Figure  6.  Schematic diagram of Ensemble Correlation algorithm adapted from Meinhart et al.[32]

    图  7  不同输入图片数对应的特定点平均速度

    Figure  7.  The average velocity of specific points corresponding to different input image numbers

    图  8  不同启动稳压下的湍流能谱

    Figure  8.  Turbulence spectra under different stabilized nozzle pressures

    图  9  各工况预乘谱验证−1幂次率

    Figure  9.  The pre-multiplication spectrum validating the −1 power-law

    图  10  主频引入源验证

    Figure  10.  Verification of the source of the main frequency introduction

    表  1  原图与畸变矫正后图像的畸变程度对比

    Table  1.   Comparison of distortion degree between original image and corrected image

    图片编号 原图/像素 矫正图像/像素 矫正量/%
    1.4910 0.2349 84.25
    1.6778 0.2204 86.86
    2.4933 0.2448 90.18
    0.7828 0.1360 82.63
    0.3247 0.0545 83.21
    下载: 导出CSV
  • [1] ASHOK A, BAILEY S C C, HULTMARK M, et al. Hot-wire spatial resolution effects in measurements of grid-generated turbulence[J]. Experiments in Fluids, 2012, 53(6): 1713–1722. doi: 10.1007/s00348-012-1382-5
    [2] HUTCHINS N, MONTY J P, HULTMARK M, et al. A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence[J]. Experiments in Fluids, 2015, 56(1): 1–18. doi: 10.1007/s00348-014-1856-8
    [3] BENEDICT L H, NOBACH H, TROPEA C. Estimation of turbulent velocity spectra from laser Doppler data[J]. Measurement Science and Technology, 2000, 11(8): 1089–1104. doi: 10.1088/0957-0233/11/8/301
    [4] BROERSEN P M T. Practical aspects of the spectral analysis of irregularly sampled data with time-series models[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(5): 1380–1388. doi: 10.1109/TIM.2008.2009201
    [5] POPE S B. Turbulent flows[J]. Measurement Science and Technology, 2001, 12(11): 2020–2021. doi: 10.1088/0957-0233/12/11/705
    [6] WERNET M P. Temporally resolved PIV for space–time correlations in both cold and hot jet flows[J]. Measurement Science and Technology, 2007, 18(5): 1387–1403. doi: 10.1088/0957-0233/18/5/027
    [7] MURPHY M J, ADRIAN R J. PIV space-time resolution of flow behind blast waves[J]. Experiments in Fluids, 2010, 49(1): 193–202. doi: 10.1007/s00348-010-0843-y
    [8] THUROW B, JIANG N B, LEMPERT W. Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements[J]. Measurement Science and Technology, 2013, 24(1): 012002. doi: 10.1088/0957-0233/24/1/012002
    [9] MILLER J D, MICHAEL J B, SLIPCHENKO M N, et al. Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser[J]. Applied Physics B, 2013, 113(1): 93–97. doi: 10.1007/s00340-013-5665-1
    [10] MILLER J D, JIANG N B, SLIPCHENKO M N, et al. Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry[J]. Experiments in Fluids, 2016, 57(12): 1–17. doi: 10.1007/s00348-016-2279-5
    [11] WAGNER J L, BERESH S J, DEMAURO E P, et al. Pulse-burst PIV measurements of transient phenomena in a shock tube[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. 2016. .
    [12] DEMAURO E P, WAGNER J L, BERESH S J, et al. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV[J]. Physical Review Fluids, 2017, 2(6): 064301. doi: 10.1103/physrevfluids.2.064301
    [13] BERESH S J, WAGNER J L, CASPER K M, et al. Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity[J]. AIAA Journal, 2017, 55(12): 4203–4218. doi: 10.2514/1.j056106
    [14] WAGNER J L, BERESH S J, CASPER K M, et al. Relationship between transonic cavity tones and flowfield dynamics using pulse-burst PIV[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. 2016. .
    [15] VANSTONE L, SALEEM M, SECKIN S, et al. Role of boundary-layer on unsteadiness on a Mach 2 swept-ramp shock/boundary-layer interaction using 50 kHz PIV[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. .
    [16] BERESH S J, HENFLING J, SPILLERS R. Pulse-burst PIV of the supersonic wake of a wall-mounted hemisphere[C]//Proc of the Proceedings of the 47th AIAA Fluid Dynamics Conference. 2017. .
    [17] BROCK B, HAYNES R H, THUROW B S, et al. An examination of MHz rate PIV in a heated supersonic jet[C]//Proceedings of the 52nd Aerospace Sciences Meeting. 2014. .
    [18] BERESH S, KEARNEY S, WAGNER J, et al. Pulse-burst PIV in a high-speed wind tunnel[J]. Measurement Science and Technology, 2015, 26(9): 095305. doi: 10.1088/0957-0233/26/9/095305
    [19] BERESH S J, HENFLING J F, SPILLERS R W, et al. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements[J]. Measurement Science and Technology, 2018, 29(3): 034011. doi: 10.1088/1361-6501/aa9f79
    [20] BERESH S J, SPILLERS R, SOEHNEL M, et al. Extending the frequency limits of “postage-stamp PIV” to MHz rates[C]//Proceedings of the AIAA Scitech 2020 Forum. 2020. .
    [21] 陆小革, 易仕和, 牛海波, 等. 不同入射激波条件下激波与湍流边界层干扰的实验研究[J]. 中国科学: 物理学 力学 天文学, 2020, 50(10): 61-72.

    LU X G, YI S H, NIU H B, et al. Experimental study on shock and turbulent boundary layer interactions under different incident shock waves[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(10): 61-72. doi: 10.1360/SSPMA-2020-0055
    [22] ZHU Y D, YUAN H J, LEE C B. Ultrafast tomographic particle image velocimetry investigation on hypersonic boundary layers[J]. Physics of Fluids, 2020, 32(9): 094103. doi: 10.1063/5.0014168
    [23] HAN J H, HE L, WU Z B. Experimental investigation on evolution characteristics of high- and low-speed streaks in supersonic turbulent boundary layer[J]. AIP Advances, 2022, 12(11): 115204. doi: 10.1063/5.0121259
    [24] 冈敦殿, 易仕和, 米琦, 等. 超声速混合层MHz级超高频流动可视化实验[J]. 气体物理, 2022, 7(6): 33–41. doi: 10.19527/j.cnki.2096-1642.0989

    GANG D D, YI S H, MI Q, et al. Experiment on flow visualization of supersonic mixing layer at MHz-level superhigh frequency[J]. Physics of Gases, 2022, 7(6): 33–41. doi: 10.19527/j.cnki.2096-1642.0989
    [25] WILLERT C E, GHARIB M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991, 10(4): 181–193. doi: 10.1007/BF00190388
    [26] PEDERSEN M, BENGTSON S H, GADE R, et al. Camera calibration for underwater 3D reconstruction based on ray tracing using Snell's law[C]//Proc of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018: 1491-14917. .
    [27] BERESH S J. Denoising 400-kHz “postage-stamp PIV” using uncertainty quantification[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. 2018. .
    [28] GAMBA M, CLEMENS N. Requirements, capabilities and accuracy of time-resolved PIV in turbulent reacting flows[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. .
    [29] OXLADE A R, VALENTE P C, GANAPATHISUB-RAMANI B, et al. Denoising of time-resolved PIV for accurate measurement of turbulence spectra and reduced error in derivatives[J]. Experiments in Fluids, 2012, 53(5): 1561–1575. doi: 10.1007/s00348-012-1375-4
    [30] VÉTEL J, GARON A, PELLETIER D. Denoising methods for time-resolved PIV measurements[J]. Experiments in Fluids, 2011, 51(4): 893–916. doi: 10.1007/s00348-011-1096-0
    [31] WIENEKE B. PIV anisotropic denoising using uncertainty quantification[J]. Experiments in Fluids, 2017, 58(8): 1–10. doi: 10.1007/s00348-017-2376-0
    [32] MEINHART C D, WERELEY S T, SANTIAGO J G. A PIV algorithm for estimating time-averaged velocity fields[J]. Journal of Fluids Engineering, 2000, 122(2): 285–289. doi: 10.1115/1.483256
    [33] DELNOIJ E, WESTERWEEL J, DEEN N G, et al. Ensemble correlation PIV applied to bubble plumes rising in a bubble column[J]. Chemical Engineering Science, 1999, 54(21): 5159–5171. doi: 10.1016/S0009-2509(99)00233-X
    [34] OZAWA Y, IBUKI T, NONOMURA T, et al. Single-pixel resolution velocity/convection velocity field of a supersonic jet measured by particle/schlieren image velocimetry[J]. Experiments in Fluids, 2020, 61(6): 1–18. doi: 10.1007/s00348-020-02963-1
    [35] WESTERWEEL J, GEELHOED P F, LINDKEN R. Single-pixel resolution ensemble correlation for micro-PIV applications[J]. Experiments in Fluids, 2004, 37(3): 375–384. doi: 10.1007/s00348-004-0826-y
    [36] TCHEN C M. On the spectrum of energy in turbulent shear flow[J]. Journal of Research of the National Bureau of Standards, 1953, 50(1): 51–62. doi: 10.6028/jres.050.009
    [37] BULL M K. Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research[J]. Journal of Sound and Vibration, 1996, 190(3): 299–315. doi: 10.1006/jsvi.1996.0066
    [38] BERESH S J, HENFLING J, SPILLERS R. “postage-stamp PIV: ” small velocity fields at 400 kHz for turbulence spectra measurements[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. .
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  18
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2023-12-12
  • 录用日期:  2023-12-19
  • 网络出版日期:  2024-01-09

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日