留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热阻式热流传感器在超高速低密度风洞中的应用

杨凯 王宏宇 朱新新 朱涛 陈曦 陶伯万 李杰

杨凯, 王宏宇, 朱新新, 等. 热阻式热流传感器在超高速低密度风洞中的应用[J]. 实验流体力学, doi: 10.11729/syltlx20230140
引用本文: 杨凯, 王宏宇, 朱新新, 等. 热阻式热流传感器在超高速低密度风洞中的应用[J]. 实验流体力学, doi: 10.11729/syltlx20230140
YANG K, WANG H Y, ZHU X X, et al. Temperature-difference-based heat-flux sensors and their application in hypervelocity low-density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230140
Citation: YANG K, WANG H Y, ZHU X X, et al. Temperature-difference-based heat-flux sensors and their application in hypervelocity low-density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230140

热阻式热流传感器在超高速低密度风洞中的应用

doi: 10.11729/syltlx20230140
基金项目: 国家重点研发计划项目(2022YFB3203900);国家自然科学基金项目(11902330)
详细信息
    作者简介:

    杨凯:(1986—),男,江西新干人,博士,副研究员。研究方向:热流测试,多目标优化,模态参数辨识。E-mail:yg.hit@hotmail.com

    通讯作者:

    E-mail:zhutao00011@sina.com

  • 中图分类号: V441;TP212.11

Temperature-difference-based heat-flux sensors and their application in hypervelocity low-density wind tunnel

  • 摘要: 在超高速低密度风洞试验中,通常采用薄壁量热计、同轴热电偶和红外热图等测试热流。这些测热方式都存在测试结果易受噪声干扰、不确定度高等问题,其原因主要在于数据处理方式复杂。同时,这些测热方式的灵敏度系数较低,也不利于测试低密度风洞试验中的低热流。原子层热电堆(Atomic Layer Thermopile, ALTP)热流传感器和小尺寸Schmidt–Boelter热流传感器具有灵敏度系数高、简单易用等特点,通过风洞试验验证了这两种热阻式热流传感器应用于超高速低密度风洞长时间低热流测试的可行性,以补充超高速低密度风洞试验测热手段。针对常规ALTP热流传感器尺寸较大等问题,以导电膜首尾串联敏感薄膜,在ALTP热流传感器使用尺寸不变的前提下,成倍提高其灵敏度系数,为下阶段ALTP热流传感器小型化奠定基础。
  • 图  1  ALTP热流传感器

    Figure  1.  The ALTP heat-flux sensor

    图  2  热流传感器对比标定量值传递链[28]

    Figure  2.  The transfer chains of the calibration method for calibrating the heat flux sensors[28]

    图  3  改进型ALTP热流传感器

    Figure  3.  The revised ALTP heat-flux sensor

    图  4  改进型ALTP热流传感器的静态标定结果

    Figure  4.  The static calibration results of the revised ALTP heat-flux sensor

    图  5  改进型ALTP热流传感器的动态特性

    Figure  5.  The dynamic characteristics of the revised ALTP heat-flux sensor

    图  6  S–B热流传感器[23]

    Figure  6.  S–B heat-flux gauge[23]

    图  7  S–B热流传感器静态标定结果

    Figure  7.  The static calibration results of S–B gauge

    图  8  风洞试验模型

    Figure  8.  The model in the wind tunnel

    图  9  部分热流测试结果

    Figure  9.  Parts of the measured heat fluxes with different sensors

    图  10  其他同轴热电偶的热流测试结果

    Figure  10.  Measured heat fluxes by other coaxial thermocouples

  • [1] 祝智伟. 风洞稀薄气动热试验测试技术研究[D]. 重庆: 重庆大学, 2019.

    ZHU Z W. Study on measuring technology of rarefied aero-dynamic heating in wind tunnel[D]. Chongqing: Chongqing University, 2019.
    [2] 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013.
    [3] 杨彦广, 李明, 李中华, 等. 高超声速飞行器跨流域气动力/热预测技术研究[J]. 空气动力学学报, 2016, 34(1): 5–13. doi: 10.7638/kqdlxxb-2015.0149

    YANG Y G, LI M, LI Z H, et al. Aerodynamic force/heating measurement on hypersonic vehicle across different flow regions[J]. Acta Aerodynamica Sinica, 2016, 34(1): 5–13. doi: 10.7638/kqdlxxb-2015.0149
    [4] 华威. 高超音速稀薄气流中平头圆柱尖锥热交换实验研究[J]. 空气动力学学报, 1984, 2(2): 61–65.

    HUA W. Experiment investigation of heat transfer to bluff cylinders and cones in hypersonic rarefied gas flow[J]. Acta Aerodynamica Sinica, 1984, 2(2): 61–65.
    [5] ALLEGRE J, BISCH D, LENGRAND J C. Experimental rarefied heat transfer at hypersonic conditions over 70-degree blunted cone[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 724–728. doi: 10.2514/2.3302
    [6] 欧朝, 龙垚松, 杨庆涛, 等. 边界层转捩飞行测量方法及实现[J]. 兵工学报, 2022, 43(10): 2657–2667. doi: 10.12382/bgxb.2021.0523

    OU C, LONG Y S, YANG Q T, et al. Boundary layer transition flight measurement and implementation[J]. Acta Armamentarii, 2022, 43(10): 2657–2667. doi: 10.12382/bgxb.2021.0523
    [7] 王宏宇, 王辉, 石义雷, 等. 一种高超声速稀薄流激波干扰气动热测量技术[J]. 宇航学报, 2020, 41(12): 1525–1532. doi: 10.3873/j.issn.1000-1328.2020.12.006

    WANG H Y, WANG H, SHI Y L, et al. An aerothermodynamics measuring technique for shock interactions in hypersonic low-density flow[J]. Journal of Astronautics, 2020, 41(12): 1525–1532. doi: 10.3873/j.issn.1000-1328.2020.12.006
    [8] CHANETZ B, POT T, BENAY R, et al. New test cases in low density hypersonic flow[J]. AIP Conference Proceedings, 2003, 663(1): 449–456. doi: 10.1063/1.1581581
    [9] CHANETZ B, BENAY R, BOUSQUET J M, et al. Experimental and numerical study of the laminar separation in hypersonic flow[J]. Aerospace Science and Technology, 1998, 2(3): 205–218. doi: 10.1016/S1270-9638(98)80054-0
    [10] 李明, 方明, 李震乾. 在稀薄气流中用红外热图测量中低量值热流[J]. 红外与激光工程, 2021, 50(4): 66–72.

    LI M, FANG M, LI Z Q. Measurement of mid-low order of magnitude of heat transfer rate using infrared thermography in rarefied flow[J]. Infrared and Laser Engineering, 2021, 50(4): 66–72.
    [11] LE SANT Y, MARCHAND M, MILLAN P, et al. An overview of infrared thermography techniques used in large wind tunnels[J]. Aerospace Science and Technology, 2002, 6(5): 355–366. doi: 10.1016/S1270-9638(02)01172-0
    [12] 许亚敏, 饶宇. 液晶热像测量精度分析及其在湍流传热研究中的应用[J]. 上海交通大学学报, 2013, 47(8): 1185–1190,1197. doi: 10.16183/j.cnki.jsjtu.2013.08.004

    XU Y M, RAO Y. Measurement accuracy and application of liquid crystal thermography technique in turbulent flow heat transfer[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1185–1190,1197. doi: 10.16183/j.cnki.jsjtu.2013.08.004
    [13] 朱新新, 王辉, 杨凯, 等. 塞块量热计的热流计算与修正方法研究[J]. 实验流体力学, 2020, 34(5): 97–102,108. doi: 10.11729/syltlx20190134

    ZHU X X, WANG H, YANG K, et al. Research on heat flux calculation and correction methods of the slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 97–102,108. doi: 10.11729/syltlx20190134
    [14] MURTHY A V, TSAI B K, GIBSON C E. Calibration of high heat flux sensors at NIST[J]. Journal of Research of the National Institute of Standards and Technology, 1997, 102(4): 479–488. doi: 10.6028/jres.102.032
    [15] 张宏安, 黄见洪, 秦峰, 等. 基于脉冲加热法的薄膜热流传感器热物性参数测量技术研究[J]. 实验流体力学, 2018, 32(6): 74–78,93. doi: 10.11729/syltlx20170120

    ZHANG H A, HUANG J H, QIN F, et al. Thermal property measuring techniques of thin-film heat flux sensors based on pulse-heating method[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 74–78,93. doi: 10.11729/syltlx20170120
    [16] MANJHI S K, KUMAR R. Surface heat flux measurements for short time-period on combustion chamber with different types of coaxial thermocouples[J]. Experimental Heat Transfer, 2020, 33(3): 282–303. doi: 10.1080/08916152.2019.1630031
    [17] YANG K. A new calibration technique for thin-film gauges and coaxial thermocouples used to measure the transient heat flux[J]. IEEE Transactions on Instrumentation and Measurement, 2064, 71: 1000809. doi: 10.1109/TIM.2021.3132064
    [18] 杨凯, 刘济春, 陈苏宇, 等. 薄膜热电阻热流传感器的对比标定结果及分析[J]. 实验流体力学, 2023, 37(6): 106–111. doi: 10.11729/syltlx20210129

    YANG K, LIU J C, CHEN S Y, et al. Calibration results and analysis of thin-film gauges calibrated with the transfer method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 106–111. doi: 10.11729/syltlx20210129
    [19] 钱炜祺, 周宇, 邵元培. 表面热流辨识结果的误差分析与估计[J]. 空气动力学学报, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185

    QIAN W Q, ZHOU Y, SHAO Y P. Error analysis of surface heat flux estimation[J]. Acta Aerodynamica Sinica, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185
    [20] 杨凯, 朱涛, 王雄, 等. 原子层热电堆热流传感器研制及其性能测试[J]. 实验流体力学, 2020, 34(6): 86–91. doi: 10.11729/syltlx20190148

    YANG K, ZHU T, WANG X, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86–91. doi: 10.11729/syltlx20190148
    [21] 段金鑫, 李强, 杨凯, 等. 原子层热电堆热流传感器在激波风洞试验中的应用[J]. 推进技术, 2022, 43(3): 27–34. doi: 10.13675/j.cnki.tjjs.200934

    DUAN J X, LI Q, YANG K, et al. Atomic layer thermopile heat-flux sensor and its application in shock tunnel tests[J]. Journal of Propulsion Technology, 2022, 43(3): 27–34. doi: 10.13675/j.cnki.tjjs.200934
    [22] ROEDIGER T, KNAUSS H, GAISBAUER U, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor—part I: sensor and benchmarks[J]. Journal of Turbomachinery, 2008, 130(1): 011018. doi: 10.1115/1.2751141
    [23] 朱新新, 朱涛, 杨凯, 等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学, 2021, 35(4): 106–111. doi: 10.11729/syltlx20200065

    ZHU X X, ZHU T, YANG K, et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 106–111. doi: 10.11729/syltlx20200065
    [24] KIDD C T, ADAMS J C. Fast-response heat-flux sensor for measurement commonality in hypersonic wind tunnels[J]. Journal of Spacecraft and Rockets, 2001, 38(5): 719–729. doi: 10.2514/2.3738
    [25] 杨凯, 杨庆涛, 朱新新, 等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J]. 宇航计测技术, 2018, 38(3): 67–72. doi: 10.12060/j.issn.1000-7202.2018.03.11

    YANG K, YANG Q T, ZHU X X, et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(3): 67–72. doi: 10.12060/j.issn.1000-7202.2018.03.11
    [26] YANG K, YANG Q T, ZHU X X, et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measurement, 2020, 150: 107039. doi: 10.1016/j.measurement.2019.107039
    [27] 庄新港, 刘红博, 张鹏举, 等. 低温辐射计热结构设计与分析[J]. 物理学报, 2019, 68(6): 060601. doi: 10.7498/aps.68.20181880

    ZHUANG X G, LIU H B, ZHANG P J, et al. Design and analysis of thermo-structure for cryogenic radiometer[J]. Acta Physica Sinica, 2019, 68(6): 060601. doi: 10.7498/aps.68.20181880
    [28] 陈苏宇, 刘济春, 杨凯, 等. 薄膜热流计与原子层热电堆传感器的激波风洞试验对比[J/OL]. 实验流体力学.

    CHEN S Y, LIU J C, YANG K, et al. Comparative analysis between thin-film gauges and ALTP sensors in shock tunnel tests[J/OL]. Journal of Experiments in Fluid Mechanics.
    [29] ZHANG P X, STICHER U, LEIBOLD B, et al. Thickness dependence of the thermoelectric voltages in YBaCuO7– δ thin films on tilted substrate of SrTiO3[J]. Physica C: Superconductivity and Its Applications, 1997, 282-287(Part 4): 2551-2552. DOI: 10.1016/s0921-4534(97)01371-3.
    [30] 杨凯, 朱新新, 朱涛, 等. 原子层热电堆热流传感器动态校准方法及其结果[C]//第十二届全国流体力学学术会议论文集. 2021.
  • 加载中
图(10)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 修回日期:  2023-11-11
  • 录用日期:  2023-11-28
  • 网络出版日期:  2024-02-26

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日