留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁湍流等动量区空间分布的实验研究

程肖岐 范子椰 唐湛棋 白建侠 姜楠

程肖岐, 范子椰, 唐湛棋, 等. 壁湍流等动量区空间分布的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230132
引用本文: 程肖岐, 范子椰, 唐湛棋, 等. 壁湍流等动量区空间分布的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230132
CHENG X Q, FAN Z Y, TANG Z Q, et al. Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230132
Citation: CHENG X Q, FAN Z Y, TANG Z Q, et al. Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230132

壁湍流等动量区空间分布的实验研究

doi: 10.11729/syltlx20230132
基金项目: 国家自然科学基金项目(11972251, 11902218, 12172242, 12272265, 12202310,12202309);中德合作研究小组基金项目(GZ1575);中国博士后基金项目(2022M712357)
详细信息
    作者简介:

    程肖岐:(1990—),男,山东泰安人,助理研究员。研究方向:湍流边界层相干结构和主被动控制减阻的实验研究。通信地址:天津市津南区雅观路135号天津大学北洋园校区机械工程学院流体力学实验室(300354)。E-mail:chengxiaoqi1990@163.com

    通讯作者:

    E-mail:nanj@tju.edu.cn.

  • 中图分类号: O357.5

Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow

  • 摘要: 为深入探索湍流边界层等动量区的空间分布特性,使用大视场粒子图像测速仪在水洞中测量了平板湍流边界层流法向平面内的速度矢量场。通过计算流向速度的概率密度函数,得到不同时刻和空间位置处的等动量区分布,分析不同数量的等动量区沿流向的持续距离以及出现频率。不同等动量区数量下,其对应的流向持续距离和流向间隔具有显著差异。当等动量区数量与其平均值相近时,等动量区在流向的持续距离较长,且流向间隔较小、出现频率较大;反之,当等动量区数量与其平均值相差较大,其对应的流向持续距离较短,且流向间隔较大、出现频率较低。
  • 图  1  实验装置及PIV测量示意图

    Figure  1.  Schematic of experimental setup and PIV measurement

    图  2  流向瞬时速度平均值随法向高度变化曲线

    Figure  2.  Distribution of mean streamwise velocity along wall-normal direction

    图  3  流向脉动速度均方根值随法向高度变化曲线

    Figure  3.  Distribution of root-mean-square value of streamwise fluctuation velocity along wall-normal direction

    图  4  PIV测量得到的流向瞬时速度等值线图

    Figure  4.  Iso-contours of instantaneous streamwise velocity measured by PIV

    图  5  流向瞬时速度的概率密度分布直方图

    Figure  5.  Histogram of probability density function of instantaneous streamwise velocity

    图  6  由剪切层速度划分得到的瞬时速度场

    Figure  6.  Instantaneous velocity field obtained by shear layer velocity division

    图  7  等动量区数量N的分布图

    Figure  7.  Distribution of the number N of the detected uniform momentum zones

    图  8  等动量区数量平均值与文献数据对比图

    Figure  8.  Comparison of the mean value of the detected uniform momentum zone number with data in the literature

    图  9  不同流向位置处等动量区数量分布

    Figure  9.  Distribution of the number of uniform momentum zones at different streamwise locations

    图  10  流向持续距离$L^+_x $的概率密度分布

    Figure  10.  Probability density function of the streamwise distance $L^+_x $

    图  11  平均流向持续距离随等动量区数量变化

    Figure  11.  Variation of the mean streamwise distance with the number of uniform momentum zones

    图  12  流向间隔$S^+_{x} $的概率密度分布

    Figure  12.  Probability density function of streamwise separation $S^+_{x} $

    图  13  流向间隔平均值随等动量区数量变化

    Figure  13.  Variation of the mean streamwise separation of uniform momentum zones

    图  14  $L^+_{x, {\mathrm{mean}}} S^+_{x, {\mathrm{mean}}} $随等动量区数量N的变化

    Figure  14.  Variation of $L^+_{x, {\mathrm{mean}}} S^+_{x, {\mathrm{mean}}} $ on the number N of uniform momentum zones

    表  1  边界层主要参数

    Table  1.   Main parameters of the boundary layer

    U/(m·s−1 uτ/(m·s−1 lν/mm δ/mm θ/mm Reθ Reτ
    0.47 0.0189 0.048 47.58 5.40 2740 997
    下载: 导出CSV
  • [1] 刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90–96. doi: 10.11729/syltlx20180101

    LIU T F, WANG X W, TANG Z Q, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90–96. doi: 10.11729/syltlx20180101
    [2] 陈耀慧, 范宝春, 梅栋杰. 槽道壁湍流的展向振荡电磁力减阻控制的PIV研究[J]. 实验流体力学, 2011, 25(2): 68–72. doi: 10.3969/j.issn.1672-9897.2011.02.014

    CHEN Y H, FAN B C, MEI D J. PIV study of drag reduction in the near-wall turbulent channel flow under the control of spanwise oscillating Lorentz force[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 68–72. doi: 10.3969/j.issn.1672-9897.2011.02.014
    [3] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30: 741–773. doi: 10.1017/S0022112067001740
    [4] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639. doi: 10.1146/annurev.fl.23.010191.003125
    [5] CHRISTENSEN K T, ADRIAN R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. Journal of Fluid Mechanics, 2001, 431: 433–443. doi: 10.1017/s0022112001003512
    [6] HUTCHINS N, MARUSIC I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579: 1–28. doi: 10.1017/s0022112006003946
    [7] HAMILTON J M, KIM J, WALEFFE F. Regeneration mechanisms of near-wall turbulence structures[J]. Journal of Fluid Mechanics, 1995, 287: 317–348. doi: 10.1017/s0022112095000978
    [8] WALEFFE F. On a self-sustaining process in shear flows[J]. Physics of Fluids, 1997, 9(4): 883–900. doi: 10.1063/1.869185
    [9] SCHOPPA W, HUSSAIN F. Coherent structure generation in near-wall turbulence[J]. Journal of Fluid Mechanics, 2002, 453: 57–108. doi: 10.1017/s002211200100667x
    [10] SMITS A J, MCKEON B J, MARUSIC I. High–reynolds number wall turbulence[J]. Annual Review of Fluid Me-chanics, 2011, 43: 353–375. doi: 10.1146/annurev-fluid-122109-160753
    [11] LI W F, ROGGENKAMP D, PAAKKARI V, et al. Analysis of a drag reduced flat plate turbulent boundary layer via uniform momentum zones[J]. Aerospace Science and Tech- nology, 2020, 96: 105552. doi: 10.1016/j.ast.2019.105552
    [12] WANG Y F, HUANG Y J, ZHANG J H, et al. Uniform momentum zones on the smooth and superhydrophobic surfaces in a turbulent boundary layer[J]. Acta Mechanica Sinica, 2023, 39(8): 1–17. doi: 10.1007/s10409-023-22467-x
    [13] ZHANG J H, LI B H, SU J B, et al. Influence of synthetic jet on uniform momentum zones[J]. International Journal of Heat and Fluid Flow, 2023, 101: 109131. doi: 10.1016/j.ijheatfluidflow.2023.109131
    [14] TANG Z Q, FAN Z Y, CHEN L T, et al. Outer-layer structure arrangements based on the large-scale zero-crossings at moderate Reynolds number[J]. Physics of Fluids, 2021, 33(8): 085121. doi: 10.1063/5.0057036
    [15] MEINHART C D, ADRIAN R J. On the existence of uniform momentum zones in a turbulent boundary layer[J]. Physics of Fluids, 1995, 7(4): 694–696. doi: 10.1063/1.868594
    [16] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422: 1–54. doi: 10.1017/S0022112000001580
    [17] DE SILVA C M, HUTCHINS N, MARUSIC I. Uniform momentum zones in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2016, 786: 309–331. doi: 10.1017/jfm.2015.672
    [18] MORRIS S C, STOLPA S R, SLABOCH P E, et al. Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer[J]. Journal of Fluid Mechanics, 2007, 580: 319–338. doi: 10.1017/s0022112007005435
    [19] HEISEL M, DASARI T, LIU Y, et al. The spatial structure of the logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers[J]. Journal of Fluid Mechanics, 2018, 857: 704–747. doi: 10.1017/jfm.2018.759
    [20] CHEN X E, CHUNG Y M, WAN M P. Uniform-momentum zones in a turbulent pipeflow[J]. Journal of Fluid Mechanics, 2020, 884: A25. doi: 10.1017/jfm.2019.947
    [21] CHEN X E, CHUNG Y M, WAN M P. The uniform-momentum zones and internal shear layers in turbulent pipe flows at Reynolds numbers up to Re τ = 1000[J]. Interna-tional Journal of Heat and Fluid Flow, 2021, 90: 108817. doi: 10.1016/j.ijheatfluidflow.2021.108817
    [22] LASKARI A, DE KAT R, HEARST R J, et al. Time evolution of uniform momentum zones in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2018, 842: 554–590. doi: 10.1017/jfm.2018.126
    [23] WANG K J, LI B H, LIU L X, et al. Experimental measurement of coherent structures in turbulent boundary layers using moving time-resolved particle image veloci-metry[J]. Physics of Fluids, 2020, 32(11): 115102. doi: 10.1063/5.0024344
    [24] 陈怡纯, 田海平, 马国祯, 等. 湍流边界层均匀动量区统计分形特性的PIV实验研究[J]. 力学学报, 2023.

    CHEN Y C, TIAN H P, MA G Z, et al. PIV experimental study on statistical fractal characteristics of uniform momentum zones in turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023.
    [25] 王超伟, 王康俊, 李彪辉, 等. 湍流边界层等动量区演化机理的实验研究[J]. 力学学报, 2021, 53(3): 761–772. doi: 10.6052/0459-1879-20-223

    WANG C W, WANG K J, LI B H, et al. Experimental investigation on the evolution mechanism of uniform momentum zones in turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 761–772. doi: 10.6052/0459-1879-20-223
    [26] POPE S B. Turbulent flows[M]. Cambrige: Cambrige University Press, 2001.
    [27] SCHLATTER P, ÖRLÜ R, LI Q, et al. Turbulent boundary layers up to Re θ = 2500 studied through simulation and experiment[J]. Physics of Fluids, 2009, 21(5): 051702. doi: 10.1063/1.3139294
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  35
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2023-11-15
  • 录用日期:  2023-11-17
  • 网络出版日期:  2023-12-14

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日