留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁湍流的复合减阻及能流分析

段鹏宇 陈曦

段鹏宇, 陈曦. 壁湍流的复合减阻及能流分析[J]. 实验流体力学, doi: 10.11729/syltlx20230126
引用本文: 段鹏宇, 陈曦. 壁湍流的复合减阻及能流分析[J]. 实验流体力学, doi: 10.11729/syltlx20230126
DUAN P Y, CHEN X. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230126
Citation: DUAN P Y, CHEN X. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230126

壁湍流的复合减阻及能流分析

doi: 10.11729/syltlx20230126
基金项目: 国家自然科学基金项目(12072012, 92252201, 9195230);中央高校基本科研业务费专项
详细信息
    作者简介:

    段鹏宇:(1997—),男,云南昆明人,博士研究生。研究方向:壁湍流与流动控制。通信地址:北京市海淀区学院路37号北京航空航天大学航空科学与工程学院(100191)。E-mail:aseduanpengyu@buaa.edu.cn

    通讯作者:

    E-mail:chenxi97@outlook.com.

  • 中图分类号: O357.5

Composite drag control and energy flux analysis for wall turbulence

  • 摘要: 湍流减阻的技术与机理具有重要的科学和工程意义。近年来,研究者对壁湍流的减阻策略和机理开展了多方位探索。本文回顾了摩阻的能流分析框架,该框架将摩阻系数和能量耗散率定量地结合了起来,清晰地给出了驱动能量和控制能量在相干、随机和平均流动中的耗散原理,该框架的分析思路对复杂控制情况仍然适用。介绍了展向对吹射流引发的大尺度环流减阻方法,该方法可有效地完成速度条带的卷并,抑制流向涡的生成,减弱近壁湍流强度,在摩擦雷诺数为180的槽道流中可达到最佳约19%的减阻,实现了通过输入相干能量减小湍流随机耗散的控制目标。展示了结合大尺度环流和壁面吹吸气的复合控制方法的优势,该方法实现了远超单一控制方法的减阻效果,在摩擦雷诺数180时达到最佳约33%的减阻和32%的净能量节省。在前人研究的基础上,本文检验了在含肋壁面上施加大尺度环流控制的复合方案,验证了大尺度环流控制的鲁棒性,发现了壁面小肋能够在一定程度上减小大尺度环流二次涡的影响,从而有效提升了壁面小肋的减阻效率。
  • 图  1  槽道流中的能流分析框架示意图[25]

    Figure  1.  Sketch of energy flux in channels[25]

    图  2  SOJF控制示意图[24]

    Figure  2.  Sketch of SOJF control[24]

    图  3  SOJF对速度条带的控制效果[23]

    Figure  3.  Control effect of SOJF for the streaks of instantaneous velocity[23]

    图  4  SOJF对涡结构的控制[24]

    Figure  4.  Control effect of SOJF for vortices[24]

    图  5  λ2等值线(蓝色)和随机耗散等值线(红色)的比较[25]

    Figure  5.  The comparison of contours of λ2 (blue lines) and random dissipation (red lines) [25]

    图  6  SOJF控制和的壁面吹吸气控制的能流分析[25]

    Figure  6.  Energy flux analysis under SOJF control and opposed wall blowing/suction control[25]

    图  7  SOJF和壁面吹吸气复合减阻控制示意图[31]

    Figure  7.  Sketch of composite drag control which combines the SOJF control and opposite wall blowing/suction control[31]

    图  8  涡结构以及y + = 15 处的流向脉动速度云图[31]

    Figure  8.  λ2 vortical structures and the streamwise velocity fluctuations at y + = 15[31]

    图  9  不同控制下的能流分析[31]

    Figure  9.  Energy flux analysis under different control [31]

    图  10  yz平面的平均速度场和平均流向速度云图[31]

    Figure  10.  yz plane view of mean velocity with contours of streamwise velocity[31]

    图  11  SOJF与壁面小肋复合控制示意图

    Figure  11.  Sketch of composite drag control of SOJF and riblets

  • [1] ABBAS A, BUGEDA G, FERRER E, et al. Drag reduction via turbulent boundary layer flow control[J]. Science China Technological Sciences, 2017, 60(9): 1281–1290. doi: 10.1007/s11431-016-9013-6
    [2] RICCO P, SKOTE M, LESCHZINER M A. A review of turbulent skin-friction drag reduction by near-wall transverse forcing[J]. Progress in Aerospace Sciences, 2021, 123: 100713. doi: 10.1016/j.paerosci.2021.100713
    [3] GOLDSTEIN D, HANDLER R, SIROVICH L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface[J]. Journal of Fluid Mechanics, 1995, 302: 333–376. doi: 10.1017/S0022112095004125
    [4] WALSH M J. Drag characteristics of V-groove and transverse curvature riblets[M]//Viscous Flow Drag Reduc-tion. New York: AIAA, 1980: 168-184. doi: 10.2514/5.9781600865466.0168.0184
    [5] WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//Proceedings of the 20th Aerospace Sciences Meeting. 1982. doi: 10.2514/6.1982-169
    [6] BECHERT D W, BARTENWERFER M. The viscous flow on surfaces with longitudinal ribs[J]. Journal of Fluid Mechanics, 1989, 206: 105–129. doi: 10.1017/s0022112089002247
    [7] BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59–87. doi: 10.1017/S0022112096004673
    [8] CUI G Y, PAN C, WU D, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2433–2442. doi: 10.1016/j.cja.2019.04.023
    [9] 常跃峰, 姜楠, 夏振炎, 等. 沟槽壁湍流减阻机理的氢气泡流动显示及数字图像分析[J]. 天津大学学报, 2009, 42(9): 839–844. doi: 10.3969/j.issn.0493-2137.2009.09.014

    CHANG Y F, JIANG N, XIA Z Y, et al. Hydrogen bubble flow visualization and digital image analysis for drag reduction mechanism in wall turbulence with groove-riblet surface[J]. Journal of Tianjin University, 2009, 42(9): 839–844. doi: 10.3969/j.issn.0493-2137.2009.09.014
    [10] CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255: 503–539. doi: 10.1017/s0022112093002575
    [11] CHU D C, KARNIADAKIS G E. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces[J]. Journal of Fluid Mechanics, 1993, 250: 1–42. doi: 10.1017/s0022112093001363
    [12] GARCÍA-MAYORAL R, JIMÉNEZ J. Hydrodynamic stability and breakdown of the viscous regime over riblets[J]. Journal of Fluid Mechanics, 2011, 678: 317–347. doi: 10.1017/jfm.2011.114
    [13] LI W P, LIU H. Two-point statistics of coherent structures in turbulent flow over riblet-mounted surfaces[J]. Acta Mechanica Sinica, 2019, 35(3): 457–471. doi: 10.1007/s10409-018-0828-2
    [14] LI W P. Turbulence statistics of flow over a drag-reducing and a drag-increasing riblet-mounted surface[J]. Aerospace Science and Technology, 2020, 104: 106003. doi: 10.1016/j.ast.2020.106003
    [15] MODESTI D, ENDRIKAT S, HUTCHINS N, et al. Dispersive stresses in turbulent flow over riblets[J]. Journal of Fluid Mechanics, 2021, 917: A55. doi: 10.1017/jfm.2021.310
    [16] YAO J, CHEN X, HUSSAIN F. Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows[J]. Physics of Fluids, 2019, 31(8): 085108. doi: 10.1063/1.5111651
    [17] MARUSIC I, CHANDRAN D, ROUHI A, et al. An energy-efficient pathway to turbulent drag reduction[J]. Nature Communications, 2021, 12: 5805. doi: 10.1038/s41467-021-26128-8
    [18] CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262: 75–110. doi: 10.1017/s0022112094000431
    [19] DENG B Q, XU C X. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence[J]. Journal of Fluid Mechanics, 2012, 710: 234–259. doi: 10.1017/jfm.2012.361
    [20] XIA Q J, HUANG W X, XU C X, et al. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control[J]. Fluid Dynamics Research, 2015, 47(2): 025503. doi: 10.1088/0169-5983/47/2/025503
    [21] YAO J, HUSSAIN F. Drag reduction via opposition control in a compressible turbulent channel[J]. Physical Review Fluids, 2021, 6(11): 114602. doi: 10.1103/PhysRevFluids.6.114602
    [22] JI Y, YAO J, HUSSAIN F, et al. Vorticity transports in turbulent channels under large-scale control via spanwise wall jet forcing[J]. Physics of Fluids, 2021, 33(9): 095112. doi: 10.1063/5.0062937
    [23] YAO J, CHEN X, THOMAS F, et al. Large-scale control strategy for drag reduction in turbulent channel flows[J]. Physical Review Fluids, 2017, 2(6): 062601. doi: 10.1103/physrevfluids.2.062601
    [24] YAO J, CHEN X, HUSSAIN F. Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing[J]. Journal of Fluid Mechanics, 2018, 852: 678–709. doi: 10.1017/jfm.2018.553
    [25] CHEN X, YAO J, HUSSAIN F. Theoretical framework for energy flux analysis of channels under drag control[J]. Physical Review Fluids, 2021, 6: 013902. doi: 10.1103/physrevfluids.6.013902
    [26] CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311
    [27] WONG C W, ZHOU Y, LI Y Z, et al. Active drag reduction in a turbulent boundary layer based on plasma-actuator-generated streamwise vortices[C]//Proceeding of the 9th International Symposium on Turbulence and Shear Flow Phenomena. 2015.
    [28] 张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48–58. doi: 10.11729/syltlx20230027

    ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48–58. doi: 10.11729/syltlx20230027
    [29] LI B H, WANG K J, WANG Y F, et al. Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet[J]. Chinese Physics B, 2022, 31(2): 024702. doi: 10.1088/1674-1056/ac0da6
    [30] IUSO G, ONORATO M, SPAZZINI P G, et al. Wall turbulence manipulation by large-scale streamwise vortices[J]. Journal of Fluid Mechanics, 2002, 473: 23–58. doi: 10.1017/s0022112002002574
    [31] YAO J, CHEN X, HUSSAIN F. Composite active drag control in turbulent channel flows[J]. Physical Review Fluids, 2021, 6(5): 054605. doi: 10.1103/physrevfluids.6.054605
    [32] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73–L76. doi: 10.1063/1.1516779
    [33] RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339–367. doi: 10.1017/jfm.2016.12
    [34] LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101–123. doi: 10.1017/jfm.2019.499
    [35] XIE F, PÉREZ-MUÑOZ J D, QIN N, et al. Drag reduction in wall-bounded turbulence by synthetic jet sheets[J]. Journal of Fluid Mechanics, 2022, 941: A63. doi: 10.1017/jfm.2022.347
    [36] SCHOPPA W, HUSSAIN F. A large-scale control strategy for drag reduction in turbulent boundary layers[J]. Physics of Fluids, 1998, 10(5): 1049–1051. doi: 10.1063/1.869789
    [37] THOMAS F, CORKE T, HUSSAIN F, et al. Turbulent boundary layer drag reduction by active control of streak transient growth[C]//Proc of the APS Division of Fluid Dynamics Meeting Abstracts. 2016.
    [38] 王晋军. 沟槽面湍流减阻研究综述[J]. 北京航空航天大学学报, 1998, 24(1): 31–34. doi: 10.13700/j.bh.1001-5965.1998.01.040

    WANG J J. Reviews and prospects in turbulent drag reduction over riblets surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 31–34. doi: 10.13700/j.bh.1001-5965.1998.01.040
  • 加载中
图(11)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  53
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-11-02
  • 录用日期:  2023-11-06
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日