留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菱形前体飞行器无驻点压力FADS技术研究

张宗源 顾蕴松 李琳恺 赵冬凯

张宗源, 顾蕴松, 李琳恺, 等. 菱形前体飞行器无驻点压力FADS技术研究[J]. 实验流体力学, doi: 10.11729/syltlx20230125
引用本文: 张宗源, 顾蕴松, 李琳恺, 等. 菱形前体飞行器无驻点压力FADS技术研究[J]. 实验流体力学, doi: 10.11729/syltlx20230125
ZHANG Z Y, GU Y S, LI L K, et al. Research on FADS technology of diamond-nosed aircraft without stagnation pressure[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230125
Citation: ZHANG Z Y, GU Y S, LI L K, et al. Research on FADS technology of diamond-nosed aircraft without stagnation pressure[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230125

菱形前体飞行器无驻点压力FADS技术研究

doi: 10.11729/syltlx20230125
基金项目: 中央高校基本科研业务费专项经费资助项目(NS2022013);江苏高校优势学科建设工程资助项目
详细信息
    作者简介:

    张宗源:(1999—),男,江苏盐城人,硕士研究生。研究方向:FADS技术。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学明故宫校区飞行测控创新实验室(210016)。E-mail:zzy083117@163.com

    通讯作者:

    E-mail:yunsonggu@nuaa.edu.cn

  • 中图分类号: V448

Research on FADS technology of diamond-nosed aircraft without stagnation pressure

  • 摘要: 现代战斗机受头部火控雷达等设备限制,无法在机头驻点附近开设测压孔,缺乏驻点压力会导致常规嵌入式大气数据传感系统测试精度大大下降。针对典型战斗机常用的菱形前体外形,对无驻点压力FADS(Flush Air Data Sensing, FADS)系统解算算法及精度进行研究。通过亚跨声速风洞校准试验,获得了测压孔压力分布特性,基于卡尔曼滤波算法构建了无驻点压力FADS技术。通过引入差压数据改进了算法,改进算法实现了部分解耦,提高了解算精度且迭代次数较少,计算量较小。风洞试验结果表明:无驻点压力解算算法可以在外插车次下较好地解算大气参数,其中迎角测量精度为0.33°,侧滑角测量精度为0.30°,静压测量精度为0.67%,马赫数测量精度为0.011。
  • 图  1  模型及测压孔

    Figure  1.  Model and FADS points

    图  2  风洞试验布局

    Figure  2.  Experimental Setup

    图  3  部分测压点的风洞试验数据

    Figure  3.  Wind tunnel test data of pressure ports

    图  4  不同马赫数下Cp1随迎角和侧滑角变化的空间曲面

    Figure  4.  Cp1 with angle of attack and sideslip at different Mach numbers

    图  5  FADS测量值与真实值对比

    Figure  5.  Comparison of FADS measurement with real values

    图  6  FADS测量值与真实值对比

    Figure  6.  Comparison of FADS measurement with real values

    图  7  Ma = 0.9,Cp14Cp3随侧滑角变化曲线

    Figure  7.  Cp14Cp3 with sideslip angle at Ma = 0.9

    图  8  FADS优化算法测量值与真实值对比

    Figure  8.  Comparison of improved FADS measurement with real values

    表  1  测压孔位置信息

    Table  1.   Location information of pressure ports

    测压孔编号 轴向位置/mm 圆周角/(°)
    1 35.0 0
    2 52.5 0
    3 70.0 0
    4 87.5 0
    5 105.0 0
    6 70.0 −30
    7 70.0 −60
    8 70.0 −90
    9 70.0 30
    10 70.0 60
    11 70.0 90
    12 35.0 180
    13 70.0 180
    14 105.0 180
    下载: 导出CSV

    表  2  精度提升幅度

    Table  2.   The increase of accuracy

    测压孔编号 迎角精度
    /(°)
    侧滑角精度
    /(°)
    静压精度
    /%
    马赫数
    精度
    3、6、7、10、12、14 −0.07 0.14 0.47 0.006
    1、6、7、10、12、14 0.89 1.02 −0.08 0.059
    1、3、6、7、10、14 0.59 0.14 0.37 0.018
    1、3、6、7、10、12 0.75 0.61 0.05 0.035
    3、7、9、10、12、14 1.13 0.25 −0.02 0.060
    3、6、9、10、12、14 −0.22 0.13 0.37 0.004
    3、6、7、9、12、14 −0.20 0.19 0.25 0.003
    下载: 导出CSV
  • [1] JOST M, SCHWEGMANN F, KOHLER T. Flush air data system – an advanced air data system for the aerospace industry[C]//Proc of the AIAA Guidance, Navigation, and Control Conference and Exhibit. 2004. .
    [2] 丁智坚, 周欢, 吴东升, 等. 嵌入式大气数据测量系统技术研究进展[J]. 宇航学报, 2019, 40(3): 247–257. doi: 10.3873/j.issn.1000-1328.2019.03.001

    DING Z J, ZHOU H, WU D S, et al. Review of flush air data sensing system[J]. Journal of Astronautics, 2019, 40(3): 247–257. doi: 10.3873/j.issn.1000-1328.2019.03.001
    [3] WHITMORE S, MOES T, LARSON T. Preliminary results from a subsonic high-angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, algorithm development, and flight test evaluation[C]//Proc of the 28th Aerospace Sciences Meeting. 1990. .
    [4] WEISS S. Comparing three algorithms for modeling flush air data systems[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002. .
    [5] WHITMORE S, COBLEIGH B, HAERING E Jr. Design and calibration of the X-33 flush airdata sensing (FADS) system[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. .
    [6] BAUMANN E, PAHLE J W, DAVIS M C, et al. X-43A flush airdata sensing system flight-test results[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 48–61. doi: 10.2514/1.41163
    [7] 王禹, 郑伟, 童建忠, 等. 飞翼飞机嵌入式大气数据系统算法研究[J]. 测控技术, 2022, 41(9): 101–106. doi: 10.19708/j.ckjs.2021.08.263

    WANG Y, ZHENG W, TONG J Z, et al. Flush air data sensing system algorithm of flying wing aircraft[J]. Measurement & Control Technology, 2022, 41(9): 101–106. doi: 10.19708/j.ckjs.2021.08.263
    [8] HENRY M, WOLF H, SIEMERS P. An evaluation of Shuttle Entry Air Data System (SEADS) flight pressures - Comparisons with wind tunnel and theoretical predictions[C]//Proc of the 15th Aerodynamic Testing Conference. 1988. .
    [9] STEPHAN T, MARKUS S, MICHAEL C, et al. Hybrid navigation system for the SHEFEX II mission[C]//Proc of the AIAA Guidance, Navigation and Control Sensor Technologies in Europe. 2008. .
    [10] 王希洋, 柏楠, 苑景春, 等. FADS系统变管径引气管路压力延迟误差补偿方法[J]. 战术导弹技术, 2015(2): 37–42. doi: 10.16358/j.issn.1009-1300.2015.02.08

    WANG X Y, BAI N, YUAN J C, et al. Compensation method for pressure delay error of variable diameter exhaust pipe in FADS system[J]. Tactical Missile Technology, 2015(2): 37–42. doi: 10.16358/j.issn.1009-1300.2015.02.08
    [11] 李清东, 陈璐璐, 张孝功, 等. FADS快速智能故障检测和诊断技术[J]. 系统工程与电子技术, 2009, 31(10): 2544–2546. , 2009, 31(10): 2544–2546. doi: 10.3321/j.issn:1001-506X.2009.10.058

    LI Q D, CHEN L L, ZHANG X G, et al. Flush airdata sensing system fast intelligent fault detection and diagnosis technology[J]. Systems Engineering and Electronics, 2009, 31(10): 25442546. doi: 10.3321/j.issn:1001-506X.2009.10.058
    [12] 杨胜江, 赵景朝, 杨志红. 嵌入式大气数据传感与惯性导航信息融合方法研究[J]. 战术导弹技术, 2016(2): 95–100. doi: 10.16358/j.issn.1009-1300.2016.02.17

    YANG S J, ZHAO J C, YANG Z H. Research on information fusion method of embedded atmospheric data sensing and inertial navigation[J]. Tactical Missile Technology, 2016(2): 95–100. doi: 10.16358/j.issn.1009-1300.2016.02.17
    [13] 陈广强, 刘吴月, 豆修鑫, 等. 吸气式空空导弹FADS系统设计[J]. 中国科学:技术科学, 2016, 46(11): 1193–1206. doi: 10.1360/N092016-00258

    CHEN G Q, LIU W Y, DOU X X, et al. Flush air data sensing system design for air breathing air-to-air missile[J]. Scientia Sinica:Technologica, 2016, 46(11): 1193–1206. doi: 10.1360/N092016-00258
    [14] 王岩, 郑伟. 分布嵌入式大气数据系统算法的初步研究[J]. 飞机设计, 2008, 28(6): 5–11,26. doi: 10.3969/j.issn.1673-4599.2008.06.002

    WANG Y, ZHENG W. Elementary study on the distributed flush air data system arithmetic[J]. Aircraft Design, 2008, 28(6): 5–11,26. doi: 10.3969/j.issn.1673-4599.2008.06.002
    [15] 王鹏, 金鑫. 尖锥前体飞行器FADS系统的人工神经网络建模及风洞试验研究[J]. 实验流体力学, 2019, 33(5): 57–63. doi: 10.11729/syltlx20180125

    WANG P, JIN X. Study on artificial neural network modeling and wind tunnel test for the FADS system applied to the vehicle with sharp nosed fore-bodies[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 57–63. doi: 10.11729/syltlx20180125
    [16] 陈广强, 刘吴月, 豆修鑫, 等. 超声速飞行器FADS系统实时解算设计与验证[J]. 空气动力学学报, 2018, 36(4): 561–570. doi: 10.7638/kqdlxxb-2016.0073

    CHEN G Q, LIU W Y, DOU X X, et al. Flush air data sensing system real-time solving design and verification for supersonic vehicle[J]. Acta Aerodynamica Sinica, 2018, 36(4): 561–570. doi: 10.7638/kqdlxxb-2016.0073
    [17] WHITMORE S, MOES T, CZERNIEJEWSKI M, et al. Application of a flush airdata sensing system to a wing leading edge(LE-FADS)[C]//Proc of the 31st Aerospace Sciences Meeting. 1993. .
    [18] 王鹏, 胡远思, 金鑫. 尖楔前体飞行器FADS系统驻点压力对神经网络算法精度的影响[J]. 宇航学报, 2016, 37(9): 1072–1079. doi: 10.3873/j.issn.1000-1328.2016.09.006

    WANG P, HU Y S, JIN X. Effect of stagnation pressure on the neural network algorithm accuracy for FADS system applied to the vehicle with sharp wedged fore-bodies[J]. Journal of Astronautics, 2016, 37(9): 1072–1079. doi: 10.3873/j.issn.1000-1328.2016.09.006
    [19] WHITMORE S A, MOES T R, LEONDES C T. Development of a pneumatic high-angle-of-attack flush airdata sensing system[J]. Control and Dynamic Systems, 1992: 453-511. .
    [20] ROHLOFF T J, WHITMORE S A, CATTON I. Fault-tolerant neural network algorithm for flush air data sensing[J]. Journal of Aircraft, 1999, 36(3): 541–549. doi: 10.2514/2.2489
    [21] TAKAKI R, TAKIZAWA M, et al. ADS measurement of HYFLEX (HYpersonic FLight EXperiment)[C]//Proc of the 35th Aerospace Sciences Meeting and Exhibit. 1997. .
    [22] KARLGAARD C D, KUTTY P, SCHOENENBERGER M, et al. Mars entry atmospheric data system trajectory reconstruction algorithms and flight results[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. .
    [23] 黄喜元, 陈洪波, 朱如意. 高超声速飞行器嵌入式大气数据获取技术研究[J]. 导弹与航天运载技术, 2017(3): 58–64. doi: 10.7654/j.issn.1004-7182.20170313

    HUANG X Y, CHEN H B, ZHU R Y. Research on air data acquisition technology of hypersonic vehicles[J]. Missiles and Space Vehicles, 2017(3): 58–64. doi: 10.7654/j.issn.1004-7182.20170313
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  39
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-11-19
  • 录用日期:  2023-11-22
  • 网络出版日期:  2024-01-10

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日