留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分段式无源流体推力矢量喷管线性控制特性研究

王怡 顾蕴松 周宇航 史楠星

王怡, 顾蕴松, 周宇航, 等. 分段式无源流体推力矢量喷管线性控制特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20230120
引用本文: 王怡, 顾蕴松, 周宇航, 等. 分段式无源流体推力矢量喷管线性控制特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20230120
WANG Y, GU Y S, ZHOU Y H, et al. The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230120
Citation: WANG Y, GU Y S, ZHOU Y H, et al. The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230120

分段式无源流体推力矢量喷管线性控制特性研究

doi: 10.11729/syltlx20230120
基金项目: 有限固壁边界约束条件下射流非受控随机偏转机制研究(11972017)
详细信息
    作者简介:

    王怡:(1999—),女,浙江宁波人,硕士研究生。研究方向:实验流体力学,流动控制。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学明故宫校区航空学院(210016)。E-mail:yiiwang@nuaa.edu.cn

    通讯作者:

    E-mail:yunsonggu@nuaa.edu.cn.

  • 中图分类号: V211.7

The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle

  • 摘要: 推力矢量是目前高性能飞行器的关键技术之一,根据实现原理分为机械式和流体式,流体式因结构简单、偏转响应快、能耗小得到了广泛关注。现有的矩形流体式推力矢量喷管存在控制规律突跳、非线性的问题,同时偏转角度有限,限制了该技术的工程应用。本文设计了一种新型的矩形分段式无源流体推力矢量喷管,通过多段壁板的“阶梯式”二次流控制和改变初始被动二次流控制量的两种控制策略,探究该新型喷管能否实现射流高线性度、大偏转角的矢量控制。采用实验和数值模拟相结合的手段对该喷管射流偏转的力学特性和流场特性开展研究。研究结果表明:该分段式矢量喷管通过“阶梯式”二次流控制提高了力矢量角变化曲线的线性度,增大了偏转的可控角度,线性度由62%提高到90.8%,最大射流偏转力矢量角从18°提高到22°;当被动二次流的初始进出气面积比为1.16时,线性度进一步增加到94.9%;该喷管在射流偏转过程中近壁面不存在明显的分离泡结构,初步解释了该喷管线性连续控制射流偏转规律的原理。
  • 图  1  基准喷管模型结构简图

    Figure  1.  Schematic diagram of the Baseline nozzle

    图  2  分段式无源流体推力矢量喷管示意图

    Figure  2.  Schematic diagram of the multi-wall passive fluidic thrust vectoring nozzle

    图  3  分段式无源流体推力矢量喷管特性研究实验平台

    Figure  3.  Experimental setup for the characteristics research of the multi-wall passive fluidic thrust vectoring nozzle

    图  4  数值模拟网络与边界条件

    Figure  4.  Numerical simulation networks and boundary conditions

    图  5  射流附壁、离壁示意图

    Figure  5.  Diagram of the jet attachment and separation

    图  6  网格无关性验证

    Figure  6.  Grid independence verification

    图  7  分段式喷管实验和数值模拟的壁面压力分布对比

    Figure  7.  Comparison of wall pressure distribution between experimen-tal and numerical simulation of the multi-wall nozzle

    图  8  被动二次流通道入口面积、出口面积示意图

    Figure  8.  Inflow area and outflow area of passive secondary flow channel

    图  9  单段基准喷管模型力矢量角随阀门闭合度变化曲线

    Figure  9.  Angular change curve of the force vector of the single-section baseline nozzle with valve closing

    图  10  分段式喷管力矢量角随阀门闭合度的变化曲线

    Figure  10.  Angular change curve of the force vector of the multi-wall nozzle with valve closing

    图  11  分段式喷管上下侧静压腔压力差系数随阀门闭合度的变化曲线

    Figure  11.  Change curves of the pressure difference coefficient of upper and lower hydrostatic chambers of the multi-wall nozzle with valve closing

    图  12  不同射流状态下的分段式喷管壁面压力分布

    Figure  12.  Pressure distribution on the wall of the multi-wall nozzle under different jet states

    图  13  不同初始进出气面积比$\varepsilon $下,分段式喷管力矢量角随阀门闭合度的变化曲线

    Figure  13.  Angular change curve of the force vector of the multi-wall nozzle with valve closing under different $\varepsilon $

    图  14  $\varepsilon = 1.16$时,分段式喷管力矢量角随阀门闭合度的变化曲线

    Figure  14.  Angular change curve of the force vector of a multi-wall nozzle with valve closing while $\varepsilon = 1.16$

    图  15  $\varepsilon = 1.16$时,分段式喷管上下侧静压腔压力差系数随阀门闭合度的变化曲线

    Figure  15.  Change curves of the pressure difference coefficient of upper and lower hydrostatic chambers of the multi-wall nozzle with valve closing while $\varepsilon = 1.16$

    图  16  中立时的流场示意图

    Figure  16.  Schematic diagram of the flow field when the jet is detached to the wall

    图  17  一段上偏时的流场示意图

    Figure  17.  Schematic diagram of the flow field when the jet is attached to the first wall

    图  18  二段上偏时的流场示意图

    Figure  18.  Schematic diagram of the flow field when the jet is attached to the second wall

    图  19  三段上偏时的流场示意图

    Figure  19.  Schematic diagram of the flow field when the jet is attached to the third wall

    表  1  基准喷管模型结构参数表

    Table  1.   Structure parameter of the Baseline nozzle

    喷管结构参数基准模型1基准模型2
    内喷管段高度H30 mm30 mm
    内喷管段宽度W150 mm150 mm
    Coanda壁板长度x60 mm60 mm
    Coanda壁板倾角θ18°30°
    下载: 导出CSV

    表  2  分段式无源流体推力矢量喷管结构参数表

    Table  2.   Structure parameter table of the multi-wall passive fluidic thrust vectoring nozzle

    喷管结构参数参数值
    内喷管段高度H30 mm
    内喷管段宽度L150 mm
    一段Coanda壁板长度x115 mm
    二段Coanda壁板长度x215 mm
    三段Coanda壁板长度x330 mm
    一段Coanda壁板倾角θ118°
    二段Coanda壁板倾角θ224°
    三段Coanda壁板倾角θ330°
    下载: 导出CSV

    表  3  壁面测压孔位分布($ L=0.054\ \mathrm{m} $)

    Table  3.   Distribution of the wall pressure tap ($ L=0.054\ \mathrm{m} $)

    测压孔编号 上/下壁面(X/L
    1 0.09
    2 0.15
    3 0.21
    4 0.35
    5 0.41
    6 0.47
    7 0.61
    8 0.68
    9 0.74
    10 0.81
    11 0.87
    12 0.94
    下载: 导出CSV

    表  4  天平静校准性能

    Table  4.   Static calibration performance of the balance

    序号 项目 X Y Z Mx My Mz
    Kg Kg•m
    1 设计载荷 3 10 3 1 1 2
    2 准度% 0.31 0.43 0.40 0.30 0.46 0.30
    3 精度% 0.21 0.19 0.11 0.22 0.24 0.17
    下载: 导出CSV

    表  5  不同射流状态下的阀门闭合状态(○代表阀门开, × 代表阀门关)

    Table  5.   Closed condition of valves in different jet states (○ represents that the valve is opened, while × represents that the valve is closed)

    射流偏转状态U1U2U3D1D2D3
    中立
    一段上偏 ×
    二段上偏 × ×
    三段上偏 × × ×
    下载: 导出CSV
  • [1] 賈東兵. 关于推力矢量控制技术的探讨[J]. 航空动力, 2018(3): 25–27.

    JIA D B. Discussion on thrust vector control technologies[J]. Aerospace Power, 2018(3): 25–27.
    [2] WILSON E A, ADLER D, BAR-YOSEPH P Z. Geometric evaluation of axisymmetric thrust-vectoring nozzles for aerodynamic performance predictions[J]. Journal of Propulsion and Power, 2002, 18(3): 712–716. doi: 10.2514/2.5988
    [3] CAPONE F, SMERECZNIAK P, SPETNAGEL D, et al. Comparative investigation of multiplane thrust vectoring nozzles[C]//Proc of the Proceedings of the 28th Joint Propulsion Conference and Exhibit. 1992. .
    [4] 柳亚冰, 符大伟, 蔡常鹏, 等. 轴对称矢量喷管空间运动学建模仿真[J]. 航空发动机, 2020, 46(6): 34–40.

    LIU Y B, FU D W, CAI C P, et al. Modeling and simulation of spatial kinematics of axisymmetric vectoring nozzle[J]. Aeroengine, 2020, 46(6): 34–40.
    [5] CHEPKIN V. New generation of Russian aircraft engines conversion; future goals[C]//Proc of the International Symposium on Air Breathing Engines. 1999. .
    [6] 冯瑞强, 李晓明, 王宇天. 几何偏转角度对矢量喷管推力特性的影响[J]. 兵器装备工程学报, 2022, 43(5): 158–164. doi: 10.11809/bqzbgcxb2022.05.026

    FENG R Q, LI X M, WANG Y T. Influence of geometrical deflection angle on thrust characteristics of vector nozzle[J]. Journal of Ordnance Equipment Engineering, 2022, 43(5): 158–164. doi: 10.11809/bqzbgcxb2022.05.026
    [7] 王朝阳. 基于并联机构全向轴对称矢量喷管研究[D]. 秦皇岛: 燕山大学, 2022. doi: 10.27440/d.cnki.gysdu.2022.000298.

    WANG Z Y. Research on omnidirectional axisymmetric vector nozzle based on parallel mechanism[D]. Qinhuangdao: Yanshan University, 2022.
    [8] 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8–15.

    XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8–15.
    [9] 史经纬, 王占学, 梁爽. 激波矢量控制喷管技术分析[J]. 航空动力, 2023(2): 71–74.

    SHI J W, WANG Z X, LIANG S. Technical analysis of shock vector control nozzle[J]. Aerospace Power, 2023(2): 71–74.
    [10] 栾思琦. 发动机激波诱导矢量喷管的流动特性研究[D]. 沈阳: 沈阳航空航天大学, 2020. doi: 10.27324/d.cnki.gshkc.2020.000039.

    LUAN S Q. Study on flow characteristics of shock induced vectoring nozzle for engine[D]. Shenyang: Shenyang Aerospace University, 2020.
    [11] ZHANG L T, SU M Y, FENG Z L, et al. Numerical study on the shock vector control performance in a de Laval nozzle with single or dual injection ports[J]. Journal of Mechanical Science and Technology, 2022, 36(6): 3001–3016. doi: 10.1007/s12206-022-0532-9
    [12] 徐惊雷, 黄帅, 潘睿丰. 双喉道气动推力矢量喷管的现状及将来[J]. 航空动力, 2023(2): 67–70.

    XU J L, HUANG S, PAN R F. Research status and development trend of dual throat fluidic thrust vectoring nozzle[J]. Aerospace Power, 2023(2): 67–70.
    [13] 王建明, 刘晓东, 夏瑄泽, 等. 一种新型双射流双喉道控制矢量喷管的数值模拟[J]. 沈阳航空航天大学学报, 2022, 39(3): 19–26.

    WANG J M, LIU X D, XIA X Z, et al. Numerical simulation of a novel dual-injection dual-throat vectoring nozzle[J]. Journal of Shenyang Aerospace Ace University, 2022, 39(3): 19–26.
    [14] 宋海华. 双喉道推力矢量喷管推力稳定性研究[D]. 北京: 北京交通大学, 2022. doi: 10.26944/d.cnki.gbfju.2022.000568.

    SONG H H. Study on thrust stability of double throat thrust vector nozzle[D]. Beijing: Beijing Jiaotong University, 2022.
    [15] ALVI F S, STRYKOWSKI P J. Forward flight effects on counterflow thrust vector control of a supersonic jet[J]. AIAA Journal, 1999, 37: 279–281. doi: 10.2514/3.14162
    [16] 刘赵淼, 徐迎丽, 申峰. 亚声速条件下外形参数对逆流矢量喷管性能影响的模拟研究[J]. 推进技术, 2014, 35(3): 305–313. doi: 10.13675/j.cnki.tjjs.2014.03.025

    LIU Z M, XU Y L, SHEN F. Effects of geometric parameters on performance of counter-flow vectoring nozzle in subsonic conditions[J]. Journal of Propulsion Technology, 2014, 35(3): 305–313. doi: 10.13675/j.cnki.tjjs.2014.03.025
    [17] 史经纬, 王占学, 张晓博, 等. 逆流推力矢量喷管主流附体及控制方法研究[J]. 空气动力学学报, 2013, 31(6): 723–726,738.

    SHI J W, WANG Z X, ZHANG X B, et al. Study on counter-flow thrust vectoring nozzle jet attachment and control[J]. Acta Aerodynamica Sinica, 2013, 31(6): 723–726,738.
    [18] 吴渴欣. 同向流动和逆向流动的推力矢量控制[D]. 杭州: 浙江理工大学, 2018.

    WU K X. Thrust vector control based on co-and-counter flow[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
    [19] SUNG H G, HEO J Y. Fluidic thrust vector control of supersonic jet using coflow injection[J]. Journal of Propulsion and Power, 2012, 28(4): 858–861. doi: 10.2514/1.b34266
    [20] 肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967–1974.

    XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967–1974.
    [21] 顾蕴松, 李斌斌, 程克明. 基于主动流动控制的射流矢量偏转技术[J]. 实验力学, 2012, 27(1): 87–92.

    GU Y S, LI B B, CHENG K M. On the jet vector deflection based on active flow control technique[J]. Journal of Experimental Mechanics, 2012, 27(1): 87–92.
    [22] 韩杰星. 流体矢量喷管内外流耦合研究[D]. 南京: 南京航空航天大学, 2018.

    HAN J X. A study for inner-outer flow coupling of the fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [23] 温俊杰. 无源受控扰动下Coanda附壁射流离壁过程研究[D]. 南京: 南京航空航天大学, 2019. .

    WEN J J. Study on the transient separation process of coanda wall-attached jet under passive controlled excitation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [24] 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609

    GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609
    [25] 冯潮, 顾蕴松, 方瑞山, 等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学.

    FENG C, GU Y S, FANG R S, et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics.
    [26] 曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202

    CAO Y F, GU Y S, HAN J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202
    [27] SHI N X, GU Y S, ZHOU Y H, et al. Mechanism of hysteresis and uncontrolled deflection in jet vectoring control based on Coanda effect[J]. Physics of Fluids, 2022, 34(8): 084107. doi: 10.1063/5.0101994
    [28] PANITZ T, WASAN D T. Flow attachment to solid surfaces: the Coanda effect[J]. AIChE Journal, 1972, 18(1): 51–57. doi: 10.1002/aic.690180111
    [29] PRAMANIK S, DAS M K. Numerical study of turbulent wall jet over multiple-inclined flat surface[J]. Computers & Fluids, 2014, 95: 132–158. doi: 10.1016/j.compfluid.2014.01.020
    [30] 王磊. 环量控制机翼气动特性及机理研究[D]. 成都: 西华大学, 2020.

    WANG L. Research on aerodynamic characteristics and mechanism of circulation control wing[D]. Chengdu: Xihua University, 2020.
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  37
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2023-10-21
  • 录用日期:  2023-11-16
  • 网络出版日期:  2023-12-06

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日